

17797



Library
Brainware University
398, Ramkrishnapur Road, Barase'
Kolka'

Time: 2:30 Hours

## **BRAINWARE UNIVERSITY**

Term End Examination 2024-2025
Programme – B.Tech.(ME)-2021/B.Tech.(ME)-2023
Course Name – Kinematics & Theory of Machines
Course Code - PCC-ME404
( Semester IV )

Full Marks: 60

| [      |                                                                                                                                                                                                                  | andidates are required to give their answers in their far as practicable.] |  |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|
|        |                                                                                                                                                                                                                  | roup-A ce Type Question) 1 x 15=15                                         |  |
| 1.     | Choose the correct alternative from the follo                                                                                                                                                                    |                                                                            |  |
|        | 왕이 생겨하는 아이는 일이 얼마나다.                                                                                                                                                                                             |                                                                            |  |
| (i)    | A mechanism with four links is classified as                                                                                                                                                                     |                                                                            |  |
|        | a) Simple mechanism.<br>c) Both (a) and (b).                                                                                                                                                                     | <ul><li>b) Inversion of the mechanism.</li><li>d) None of these.</li></ul> |  |
| (ii)   | Define the mechanism for scaling and enlarg                                                                                                                                                                      | ing drawings upto a desired ratio.                                         |  |
| (iii)  | <ul><li>a) Beam engine.</li><li>c) Pantograph.</li><li>Identify a turning pair from the following kin</li></ul>                                                                                                  | b) Elliptical trammel. d) Quick return mechanism. ematic links.            |  |
| (iv)   | <ul><li>a) Piston and cylinder of a reciprocating stea engine.</li><li>c) The lead screw of a lathe with a nut.</li><li>Identify the minimum number of possible in</li></ul>                                     | circular hole.<br>d) Ball and socket joint.                                |  |
|        | kinematic chain.                                                                                                                                                                                                 |                                                                            |  |
|        | a) L.<br>c) (L-1).                                                                                                                                                                                               | b) (L+1).<br>d) (L+2).                                                     |  |
| (v)    | v) Choose the correct examples of forced closed kinematic pairs from the following: 1. Cam and Roller Mechanism. 2. Door Closing Mechanism. 3. Slider-Crank Mechanism. 4. Automotive Clutch Operating Mechanism. |                                                                            |  |
| (vi)   | <ul><li>a) 1, 2 and 4.</li><li>c) 2, 3 and 4.</li><li>Identify the minimum number of links require</li></ul>                                                                                                     | b) 1 and 3.<br>d) 1, 2, 3 and 4.<br>ed for a simple mechanism.             |  |
| ,,     | a) 1 link.                                                                                                                                                                                                       | b) 2 links.                                                                |  |
|        | c) 3 links.                                                                                                                                                                                                      | d) 4 links.                                                                |  |
| (vii)  | Predict the Degree of Freedom of a slider cra                                                                                                                                                                    | nk mechanism.                                                              |  |
|        | a) 2.<br>c) 0.                                                                                                                                                                                                   | b) 3.<br>d) 1.                                                             |  |
| (viii) | Predict the correct turning pair between a bo                                                                                                                                                                    | 1 ·                                                                        |  |

## Library Brainware University 398, Ramkrishnapur Road, Barasat Kalkata, Wast Bengal-700125

|        | a) A turning pair. Kolkata, West Bengal-700125                                                                                                        | b) Spherical pair.<br>d) Screw pair.                                                                                                |         |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------|
| (ix)   | c) Sliding pair.<br>Predict an example of the inversions of a doub                                                                                    | le slider crank mechanism.                                                                                                          |         |
|        | <ul><li>a) Whitworth return motion.</li><li>c) Rotary engine.</li><li>Predict from the following pair which is not con</li></ul>                      | d) Oldham's Coupling.                                                                                                               |         |
|        | <ul><li>a) Positive drive - Belt drive.</li><li>c) To connect non-parallel and non-</li></ul>                                                         | d) Diminished noise and smooth opera                                                                                                | ation - |
| (xi)   | intersecting shafts - Spiral gearing.<br>Identify the machine in which a single slider fo<br>considering slider as a fixed one.                       |                                                                                                                                     |         |
| (vii)  | a) Hand pump. c) Quick return. Identify the correct combination of kinematic parts.                                                                   | <ul><li>b) Rolling mechanism.</li><li>d) Oscillating cylinder.</li><li>pairs used in a four-bar chain mechanism</li></ul>           |         |
| (^''') | a) All turning pairs.                                                                                                                                 | <ul> <li>b) One turning pair and the others are pairs.</li> </ul>                                                                   | sliding |
|        | c) One sliding pair and the others are turning                                                                                                        | d) All sliding pairs.                                                                                                               |         |
| (xiii) | pairs.  Predict the correct number of elements and hi                                                                                                 | gher pairs for a simple mechanism.                                                                                                  |         |
|        | <ul><li>a) 3 elements with 1 higher pair.</li><li>c) 1 element with 1 higher pair.</li><li>Identify the correct location of the Pitch point</li></ul> | b) 2 elements with 1 higher pair. d) 4 elements with 1 higher pair.                                                                 |         |
| (XIV)  | a) Any point on the pitch curve                                                                                                                       | <ul><li>b) The point on the cam pitch curve ha<br/>maximum pressure angle.</li><li>d) The point on the cam pitch curve ha</li></ul> |         |
|        | c) Any point on the pitch circle.                                                                                                                     | minimum pressure angle.                                                                                                             | is the  |
| (xv)   | Predict the degree of freedom of a spherical pa                                                                                                       |                                                                                                                                     |         |
|        | a) 1.                                                                                                                                                 | b) 2.                                                                                                                               |         |
|        | c) 3.                                                                                                                                                 | d) 4.                                                                                                                               |         |
|        |                                                                                                                                                       | ир-В                                                                                                                                | 0 5 4   |
|        | (Short Answer 1                                                                                                                                       | Type Questions)                                                                                                                     | 3 x 5=1 |
| 2. D   | iscuss the basic function of a cam.                                                                                                                   |                                                                                                                                     | (3)     |
|        |                                                                                                                                                       |                                                                                                                                     | (3)     |
| 3. D   | escribe the term "Mobility of a Mechanisms".                                                                                                          |                                                                                                                                     | (3)     |
| 4. III | ustrate the function of a governor.                                                                                                                   |                                                                                                                                     | (3)     |
| 5. W   | ith a neat sketch, illustrate the following terms,                                                                                                    | (i) Pinion and (ii) Gear Wheel.                                                                                                     | (3)     |
| 5. 111 | ustrate the Rayleigh's method of finding the na                                                                                                       | tural frequency of transverse vibrations.                                                                                           | (3)     |
|        |                                                                                                                                                       | OR.                                                                                                                                 |         |
| W      | ith a neat sketch, compare the motions of diffe                                                                                                       |                                                                                                                                     | (3)     |

Group-C

|    | (Long Answer Type Questions)                                                                                                                                                                                                           | 5 x 6=30 |  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|
| 7. | Illustrate the classification of Gears with suitable example.                                                                                                                                                                          | (5)      |  |
| 8. | Define the terms "Damping Ratio" and "Transmissibility Ratio".                                                                                                                                                                         | (5)      |  |
| 9. | The speed ratio of a reverted gear train is to be 15. The module of gears 1 and 2 is 3 mm and that of gears 3 and 4 is 2.5 mm. Estimate the suitable number of teeth for the gears. The Centre distance between gear shafts is 250 mm. | (5)      |  |
| 10 | Interpret the following term "stability of a governor". Draw and explain the controlling<br>force versus radius of rotation diagrams for a stable, unstable and isochronous governor.<br>Interpret the conditions for stability.       | (5)      |  |
| 11 | . Explain the effect of spring mass for the calculation of natural frequency of any kind of mechanical system.                                                                                                                         | (5)      |  |
| 12 | L. A single degree damped vibrating system consists of a suspended mass of 2.5 Kg and spri constant 30 N/cm. The amplitude decreases to 25% of initial value after 4 oscillations. Evaluate the value of Logarithmic Decrement.        | ng (5)   |  |
|    |                                                                                                                                                                                                                                        |          |  |
|    | OR                                                                                                                                                                                                                                     |          |  |
|    | A spring-mass system $K_1$ , m has a natural frequency $= f_1$ . If a second spring $K_2$ is added in series with the first spring, the natural frequency is lowered to $(1/2) f_1$ . Evaluate $K_2$ in                                |          |  |
|    | terms of K <sub>1</sub> .                                                                                                                                                                                                              |          |  |
|    |                                                                                                                                                                                                                                        |          |  |
|    |                                                                                                                                                                                                                                        |          |  |
|    |                                                                                                                                                                                                                                        |          |  |
|    |                                                                                                                                                                                                                                        |          |  |
|    | *********                                                                                                                                                                                                                              |          |  |

Library
Brainware University
398, Ramanshnapur Road, Barasat
Kolkata, West Bengal-700125