

Brainware University 398, Ramkrishnapur Road, Barasat Kolkata, West Bengal-700125

BRAINWARE UNIVERSITY

Term End Examination 2024-2025
Programme – Dip.RA-2023
Course Name – Al in Robotics
Course Code - ECPE402C
(Semester IV)

Full	Marks: 60	
rull	iviarks: 60	

Time: 2:30 Hours

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group-A

(Multiple Choice Type Question)

1 x 15=15

- 1. Choose the correct alternative from the following:
- (i) Indicate from the following that is a characteristic of First Order Predicate Calculus.
 - a) It only deals with propositions
- b) It allows for quantification over individuals
- c) It doesn't support logical connectives
- d) It's limited to binary relations
- (ii) Choose from the following is an example of theorem proving in Al.
 - a) Predicting stock market trends
- b) Solving mathematical problems

c) Playing chess

- d) Recognizing faces
- (iii) Indicate the main focus of vision and speech processing in Al.
 - a) Analyzing written documents
- b) Interpreting visual and auditory data
- c) Creating virtual reality environments
- d) Controlling robotic movements
- (iv) Identify from the following an expert systems in Al.
 - a)
 Learning new skills autonomously
- b) Replicating human decision-making processes
- c) Performing physical tasks with precision
- d) Analyzing large datasets for patterns
- (v) Select an algorithm that efficiently solves constraint satisfaction problems by systematically assigning values to variables.
 - a) Best-first search

b) Hill climbing

Brainware University 398, Ramkrishnapur Road, Barasai Kolkata, West Bengal-700125

	c) Branch and bound	d) Backtracking			
(vi)	Indicate a search algorithm that iteratively resmaller subproblems until a solution is found.	duces the problem by decomposing it into			
	a) Means-End Analysis	b) Problem Reduction			
	c) State space search	d) Branch and bound			
(vii)	Select from the following that production syst	tems are used.			
	a) Heuristic search	b) Constraint satisfaction problems			
	c) Means-End Analysis	d) Problem Reduction			
(viii) Identify from the following algorithm that cor and depth-first search by using an iterative de	nbines the benefits of both breadth-first eppening approach.			
	a) LA* Algorithm	b) AO* Algorithm			
	c) Hill climbing	d) Depth-first search			
(ix)	In the context of heuristic search, AO* indicat	es.			
()	a) Adaptive Optimization Algorithm	b) Advanced Objective Algorithm			
	c) Analytical Optimization Algorithm	d) Anytime Optimized Algorithm			
(v)	What does the term "vanishing gradient" relate to in neural networks?				
(///	a) Slow convergence during training	b) Rapid convergence during training			
	c) Unstable activation functions	 d) Difficulty in updating weights in deep networks 			
(xi	Select the type of neural network that is designed to mimic the structure of the human brain.				
	a) Convolutional neural network	b) Recurrent neural network			
	c) Feedforward neural network	d) Long Short-Term Memory (LSTM) network			
(xii) Indicate how a genetic algorithm handles the	search space in optimization problems.			
(2.1.	 a) By exhaustively searching all possible 	b) By randomly generating solutions			
	solutions c) By evaluating fitness for each solution	 d) By exploring promising regions of the search space 			
(xiii) Choose the primary challenge in training deep	neural networks.			
	a) Overfitting	b) Underfitting			
	c) Vanishing gradients	d) High computational cost			
(xiv	Indicate the purpose of regularization techniq	ues in neural networks.			
	a) To increase the number of parameters	b) To introduce noise in the data			
	c) To prevent overfitting	d) To reduce the learning rate			
(xv)	Select from the following that is NOT a commoneural networks.	on type of activation function used in			
	a) ReLU c) Linear	b) Sigmoid d) Exponential			

Group-B

2.	Explain the concept of learning rate in Artificial Neural Networks (ANNs) and its impact on model training and convergence.	(3)
3.	Give an example of Heuristic Search. Library	(3)
4.	Define state space search. Brainware University 398, Ramkrishnapur Road, Barasat Kolkata, West Bengal-700125	(3)
5.	Give an example of Breadth-First Search.	(3)
		(0)
6.	Explain frame in AI with an example.	(3)
	OR	
	Illustrate Structure of a Partitioned Network.	(3)
	Group-C (Long Answer Type Questions)	5 x 6=30
, at		
7.	Discuss the role of regularization techniques such as L2 regularization and dropout in preventing overfitting in Artificial Neural Networks (ANNs).	(5)
8.	Explain Bidirectional Search.	(5)
9.	Illustrate how semantic analysis in NLP enhances language understanding.	(5)
10	. Give an example of a semantic network.	(5)
11	. Explain the concept of learning algorithms in Artificial Neural Networks (ANNs) and their role in model training.	(5)
12	. Illustrate techniques that are used in Natural Language Processing (NLP) and how they contribute to language understanding.	(5)
	OR	
	Explain Horn Clauses, First Order Predicate Calculus, and Resolution in AI, and how are thused in logical reasoning.	ney (5)