

LIBRARY Brainware University Barasat, Kolkata -700125

BRAINWARE UNIVERSITY

Term End Examination 2024-2025
Programme – Dip.CSE-2022/Dip.CSE-2023
Course Name – Design and Analysis of Algorithm
Course Code - DCSE-PC402
(Semester IV)

	Marks : 60 he figure in the margin indicates full marks. Cand own words as far	didates are required to give their a	Time: 2:30 Hours answers in their	
1.	Grou (Multiple Choice	Type Question)	1 x 15=15	
1.	Choose the correct alternative from the following	rg:		
(i)	Identify the option that is not relevant for Algorithm analysis.			
(ii)	a) Best Case Analysis c) Average Case Analysis Identify the option that is best suited data structure algorithm.	b) Alpha Case Analysisd) Worst Case Analysisctures for implementing a recursiv	e	
(iii)	a) Arrayc) StackSelect the approach to sole travelling salesman	b) Linked Listd) Queueproblem.		
(iv)	a) a spanning tree c) bellman – ford algorithm Identify from the following is/are property/proproblem.	b) a minimum spanning treed) dfs traversalperties of a dynamic programming	3	
(v)	a) Optimal substructurec) Greedy approachSelect problems that can be solved using dynam	b) Overlapping subproblems d) Both 1 & 2 nic programming.		
(vi)	a) Mergesortc) Longest common subsequenceSelect the worst-case time complexity of Quicks	b) Binary search d) Quicksort sort .		
(vii)	a) O(n)c) O(log2n)Choose the correct one, Floyd Warshall's Algori	b) O(1) d) O(n^2) thm can be applied on	_	
viii)	 a) Undirected and unweighted graphs c) Directed graphs Choose from the following that is a valid metho 	b) Undirected graphs d) Acyclic graphs d for finding the maximum flow in	n a	

network flow graph.

	a) Kruskal's algorithm	b) Ford-Fulkerson algorithmd) none of these				
(ix)	c) KMP algorithm x) Choose the correct option that Ford-Fulkerson algorithm computes in a network flow					
	graph.	b) Maximum matching				
	a) Maximum spanning tree c) Maximum flow	d) Shortest path				
(x) Identify the importance of scalability, when designing algorithms for real-life problems.						
	a) Scalability ensures that the algorithm is easy to understand	 b) Scalability allows the algorithm to ad changing requirements and handle la datasets 				
	c) Scalability is irrelevant for real-life problems	d) Scalability makes the algorithm less efficient				
(xi)	Write the sufficient condition to detect cycle in a	a directed graph.				
	a) Big-oh(V)	b) Theta(V2) d) Theta(V3)				
(xii)	c) Big-Oh(VE) Choose the correct option : Floyd Warshall Algo					
	a) Single source shortest pathc) Minimum spanning tree	b) Topological sortd) Transitive closure				
(xiii)	Choose the correct option: the value of k is 0 in					
	a) 1 intermediate vertex	b) 0 intermediate vertex				
(xiv	c) N intermediate vertices Select an example of linear time complexity.	d) N-1 intermediate vertices				
	a) O(1) c) O(n)	b) O(log n) d) O(n^2)				
(xv) Choose the correct option: Rabin Karp algorithm have worst case time complexity						
	a) same as naive pattern searching algorithm c) more than naive pattern searching	b) less than naive pattern searching algorithms of these	orithm			
	algorithm					
	Grou	*/				
(Short Answer Type Questions) 3 x						
2. Write down the significance of the P vs NP problem in computer science.						
	xplain some common applications of pattern mat		(3)			
4. Define the longest common subsequence (LCS) problem. (3) 5. Explain the 0/1 Knapsack Problem. (3)						
6. Express the key steps involved in designing algorithms for real-life problems. (3) OR						
	xpress the importance of considering constraints roblems.	T	(3)			
	Grou	n-C				
	(Long Answer Ty		5 x 6=30			
7. Illustrate the Strassen's matrix multiplication algorithm, compare the time complexity of it						
8.	with naive matrix multiplications.8. Compare and contrast Greedy and Dynamic Programming Approaches for problem solving.					
	9. State master theorem with example. (5)10. Write down the Floyd-Warshall algorithm and investigate its time complexity. (5)					
11. Explain the Divide and Conquer technique using Merge Sort Algorithm.						
12.	12. Differentiate P, NP and NP-Hard class. (5)					

and the example of the Traveling Salesman Foblem	Explain the NP-hard problem with the example of the Traveling Salesman Problem.	
--	---	--

(5)

LIBRARY Brainware University Barasat, Kolkata -700125