LIBRARY Brainware University Barasat, Kolkata -700125 ## **BRAINWARE UNIVERSITY** Term End Examination 2024-2025 Programme – Dip.CSE-2022/Dip.CSE-2023 Course Name – Design and Analysis of Algorithm Course Code - DCSE-PC402 (Semester IV) | | Marks : 60
he figure in the margin indicates full marks. Cand
own words as far | didates are required to give their a | Time: 2:30 Hours
answers in their | | |-------|--|--|--------------------------------------|--| | 1. | Grou
(Multiple Choice | Type Question) | 1 x 15=15 | | | 1. | Choose the correct alternative from the following | rg: | | | | (i) | Identify the option that is not relevant for Algorithm analysis. | | | | | (ii) | a) Best Case Analysis
c) Average Case Analysis
Identify the option that is best suited data structure
algorithm. | b) Alpha Case Analysisd) Worst Case Analysisctures for implementing a recursiv | e | | | (iii) | a) Arrayc) StackSelect the approach to sole travelling salesman | b) Linked Listd) Queueproblem. | | | | (iv) | a) a spanning tree
c) bellman – ford algorithm
Identify from the following is/are property/proproblem. | b) a minimum spanning treed) dfs traversalperties of a dynamic programming | 3 | | | (v) | a) Optimal substructurec) Greedy approachSelect problems that can be solved using dynam | b) Overlapping subproblems
d) Both 1 & 2
nic programming. | | | | (vi) | a) Mergesortc) Longest common subsequenceSelect the worst-case time complexity of Quicks | b) Binary search
d) Quicksort
sort . | | | | (vii) | a) O(n)c) O(log2n)Choose the correct one, Floyd Warshall's Algori | b) O(1)
d) O(n^2)
thm can be applied on | _ | | | viii) | a) Undirected and unweighted graphs c) Directed graphs Choose from the following that is a valid metho | b) Undirected graphs d) Acyclic graphs d for finding the maximum flow in | n a | | network flow graph. | | a) Kruskal's algorithm | b) Ford-Fulkerson algorithmd) none of these | | | | | |--|--|--|----------|--|--|--| | (ix) | c) KMP algorithm x) Choose the correct option that Ford-Fulkerson algorithm computes in a network flow | | | | | | | | graph. | b) Maximum matching | | | | | | | a) Maximum spanning tree c) Maximum flow | d) Shortest path | | | | | | (x) Identify the importance of scalability, when designing algorithms for real-life problems. | | | | | | | | | a) Scalability ensures that the algorithm is easy to understand | b) Scalability allows the algorithm to ad
changing requirements and handle la
datasets | | | | | | | c) Scalability is irrelevant for real-life problems | d) Scalability makes the algorithm less efficient | | | | | | (xi) | Write the sufficient condition to detect cycle in a | a directed graph. | | | | | | | a) Big-oh(V) | b) Theta(V2)
d) Theta(V3) | | | | | | (xii) | c) Big-Oh(VE) Choose the correct option : Floyd Warshall Algo | | | | | | | | | | | | | | | | a) Single source shortest pathc) Minimum spanning tree | b) Topological sortd) Transitive closure | | | | | | (xiii) | Choose the correct option: the value of k is 0 in | | | | | | | | a) 1 intermediate vertex | b) 0 intermediate vertex | | | | | | (xiv | c) N intermediate vertices
Select an example of linear time complexity. | d) N-1 intermediate vertices | | | | | | | a) O(1)
c) O(n) | b) O(log n)
d) O(n^2) | | | | | | (xv) Choose the correct option: Rabin Karp algorithm have worst case time complexity | | | | | | | | | a) same as naive pattern searching algorithm c) more than naive pattern searching | b) less than naive pattern searching algorithms of these | orithm | | | | | | algorithm | | | | | | | | Grou | */ | | | | | | (Short Answer Type Questions) 3 x | | | | | | | | 2. Write down the significance of the P vs NP problem in computer science. | | | | | | | | | xplain some common applications of pattern mat | | (3) | | | | | 4. Define the longest common subsequence (LCS) problem. (3) 5. Explain the 0/1 Knapsack Problem. (3) | | | | | | | | 6. Express the key steps involved in designing algorithms for real-life problems. (3) OR | | | | | | | | | xpress the importance of considering constraints roblems. | T | (3) | | | | | | Grou | n-C | | | | | | | (Long Answer Ty | | 5 x 6=30 | | | | | 7. Illustrate the Strassen's matrix multiplication algorithm, compare the time complexity of it | | | | | | | | 8. | with naive matrix multiplications.8. Compare and contrast Greedy and Dynamic Programming Approaches for problem solving. | | | | | | | | 9. State master theorem with example. (5)10. Write down the Floyd-Warshall algorithm and investigate its time complexity. (5) | | | | | | | 11. Explain the Divide and Conquer technique using Merge Sort Algorithm. | | | | | | | | 12. | 12. Differentiate P, NP and NP-Hard class. (5) | | | | | | | and the example of the Traveling Salesman Foblem | Explain the NP-hard problem with the example of the Traveling Salesman Problem. | | |--|---|--| |--|---|--| (5) *********** LIBRARY Brainware University Barasat, Kolkata -700125