

BRAINWARE UNIVERSITY

Term End Examination 2024-2025
Programme – M.Sc.(MATH)-2023
Course Name – Coding Theory
Course Code - MSCME401D
(Semester IV)

Library
Brainware University
398, Ramkrishnapur Road, Barasal
Kolkata, West Bangal-700125

Full Marks: 60

Time: 2:30 Hours

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group-A

(Multiple Choice Type Question)

1 x 15=15

- 1. Choose the correct alternative from the following:
- (i) Choose the correct option: If α be a root of $1 + x + x^4 \in F_2[x]$, then α is a primitive element of
 - a) F_2

b) F4

c) Fg

- d) F_{16}
- (ii) Choose the right option: For a fixed positive integer m, all the integers divisible by m form an
 - a)
 Ideal of Z

b) Ideal of Z_2

c) Ideal of Z_m

- d) None of these
- (iii) If V be a vector space over F_q with dim(V) = k then conclude that V has
 - a) q elements

b) q^k elements

k elements

- d) none of these
- (iv) Choose the right option: In the ring Z of integers

a) all integers form an ideal

- b) all the even integers form an ideal
- c) all the odd integers form an ideal
- d) No integers form an ideal
- (v) Select the correct option: A parity check matrix for G24 is
 - a) 12x12 matrix

b) 12x24 matrix

c) 24x24 matrix

d) 24x1 matrix

(3)

(3)

4. Illustrate extended code of a code C and parity-check coordinate.

5. State the Minimum distance decoding rule.

Library Brainware University 6. Justify Sphere-covering bound. 398, Ramkrishnapur Road, Barasat (3)Kolkata, West Bengal-700125 Justify the definition of perfect code. OR (3)Group-C 5 x 6=30 (Long Answer Type Questions) 7. If V be a vector space over F_q and dim(V)=k then evaluate (5) that $V \text{ has } \frac{1}{k!} \prod_{i=0}^{k-1} (q^k - q^i)$ different bases. If C is a q-ary Reed Solomon code generated by g(x) =(5) $\prod_{i=1}^{\delta-1} (x - \alpha^i)$ with $2 \le \delta \le q - 1$ then justify the extended code \underline{C} is a MDS code. 9. Explain Decoding with a binary Hamming code. (5) 10. Justify linear codes with example. (5) 11. Establish that Z_m is a field if and only if m is a prime. (5) 12. Using Sphere-covering bound construct that $A_2(5,4) = 2$ (5) Construct a generator matrix and parity check matrix for binary linear code C= (5)

<{11101, 10110, 01011, 11010}>