

LIBRARY Brainware University Barasat, Kolkata -700125

BRAINWARE UNIVERSITY

Term End Examination 2024-2025 Programme – B.Tech.(CSE)-AIML-2022 Course Name - Pattern Recognition Course Code - PEC-CSM601C (Semester VI)

Time: 2:30 Hours Full Marks: 60

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group-A

(Multiple Choice Type Question)

1 x 15=15

- 1. Choose the correct alternative from the following: (i) Select the example of an unsupervised learning task is b) Decision Tree Classification a) Linear Regression d) Logistic Regression c) Clustering. (ii) In the K Means clustering, the letter K represents b) Number of clusters
 - - a) Number of data points
- c) Hindering user experience
- d) Data dimensionality
- (iii) Select from the following that is a Bayesian parameter estimation method
 - a) MAP (Maximum A Posteriori)
- b) MLE

- d) SVM
- (iv) State the objective of MLE is to
 - a) Maximize the likelihood function
- b) Minimize the variance
- c) Find the least-squares error
- d) Reduce the number of parameters
- (v) In K-means clustering, state the number of clusters K from the following
 - a) Automatically determined from the data c) Always equal to the number of data points
- b) Specified by the user before training
- d) Always 1
- (vi) Choose from the following option in the Gaussian distribution, theµ represents,
 - a) The standard deviation

b) The variance

c) The mean

- d) The skewness
- (vii) Choose from the following option that represent the shape of the Gaussian distribution
 - a) Symmetric and bell-shaped
- b) Uniform

c) Skewed to the right

- d) Exponential
- (viii) Select from the following that is a nonparametric method for density estimation
 - a) Parzen-Window method

- b) Maximum Likelihood Estimation
- c) Expectation-Maximization

- d) Bayesian Estimation
- (ix) Select the option that KNN classification assigns a new point based on

LIBRARY Brainware University

Barasat, Kolkata -700125

	700125	nearest poin	its
inala		b) Majority voting among nearest poin	
	a) Probability distributions	d) Gradient descent optimize	
(x)	c) Log-likelihood estimation Choose the factor significantly impacts KNN per	formance	
(^)	choose the factor significantly impacts the	b) Learning rate	
	a) Number of neighbors (K)	d) Transition matrix	
/v:\	c) Prior probability Select the correct definition of dictionary learni	ng in machine learning	
(XI)	Select the correct definition of dictionary	b) A technique to store and retrieve w	ords
	a) A method to learn a sparse representation	A technique	i
	of data	d) A method to generate new features	
	c) A method to reduce computational speed	randomly	
(vii)	Identify the main objective of linear discriminar	t functions in classification	
(^!!)	-) Asi traine intro class variance	b) Maximize inter-class similarity	
	a) Minimize intra-class variancec) Maximize between-class variance	d) Minimize all variances	
/viii	Maximize between-class variance O) Maximize between-class variance State the main reason deep neural networks outperform shallow networks b) They learn complex features through		rh
(^!!!			•••
	They have more neurons	Jooner lavers	
	c) They require fewer training samples	d) They reduce training time	
(viv)	c) They require fewer training samples Identify the key feature of Convolutional Neural	Networks (CNNs)	feature
(XIV)		D) They dame	icata. c
	a) They use fully connected layers only	tion	
	c) They do not support image processing	d) They work only with structured dat	u .
(xv) Identify an algorithm commonly used to construct decision trees			
(×v)		b) ID3	
	a) AdaBoost c) Linear Regression	d) Backpropagation	
	c) Linear Regression	स्मान्य हो अस्य १९८० मान्य के प्राप्त कर विकास कर के प्राप्त कर के प्राप्त कर कि प्राप्त कर कर कर कर कर कर कर स्मान्य हो अस्यास कर	
	Grou	р-В	3 x 5=15
	(Short Answer Ty	pe Questions)	3 / 3-13
			(2)
2 C+	ate the necessary conditions for two events that	are to be mutually exclusive	(3)
			(3)
 Compare Multilayer Perceptron (MLP) with single-layer perception. Judge your answer that Deep neural network considered as "deep"- is it true statement. 			(3)
E E de la the modling in a CNN			(3)
6. Explain the concept of vanishing gradients in RNNs and its impact on training deep (3)			
	tworks.		
	OR	to the selling properties	(3)
Ex	plain recurrent neural network (RNN), and also e	explain it handling procedure the	(3)
	quential data.		
	Group		F v 6-20
	(Long Answer Ty	pe Questions)	5 x 6=30
			- 91 1 1 1 1
7. C	etermine the optimal number of clusters in K-M	eans.	(5) (5)
8. E	8. Explain the different distance parameter of kNN.		
9. E	9. Explain the concept of margin in SVM. Compare the difference between hard and soft (5)		
	nargin SVM.		(5)
	10. Compare between Convex and Non-Convex functions in Gradient Descent.		
	11. Explain Gaussian Mixture Model (GMM)		
12. C	ompare Multilayer Perceptron (MLP) with Feedf		(5)
_	OR		/E\
C	ompare Deep Neural Networks (DNN) with Mult	nayer Perceptron (MLP).	(5)