16756 LIBRARY Brainware University Barasat, Kolkata -700125 ## **BRAINWARE UNIVERSITY** Term End Examination 2024-2025 Programme – BCA-2022 Course Name – Introduction to Internet of Things (IoT) Course Code - BCAE602A (Semester VI) Full Marks: 60 Time: 2:30 Hours [The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.] ## Group-A (Multiple Choice Type Question) 1 x 15=15 - 1. Choose the correct alternative from the following: - (i) What are the core functionality of IoT systems? - a) Collecting and transmitting data from connected devices - c) Enabling devices to communicate without human intervention - b) Storing large amounts of data in cloud storage - d) Allowing devices to be manually controlled - (ii) Show the difference between an IoT-enabled system and a traditional embedded system. - a) IoT systems involve cloud connectivity, while embedded systems are standalone - c) IoT systems do not use sensors, while embedded systems do - b) IoT systems are smaller in scale than embedded systems - d) Embedded systems focus on simple tasks, whereas IoT systems handle complex data processing - (iii) Identify which communication model in IoT enables real-time analytics and decision-making. - a) Device-to-Device Communication - b) Device-to-Cloud Communication - c) Cloud-to-Device Communication - d) Edge-to-Cloud Communication - (iv) The network layer's role in enhancing IoT efficiency can be explained as - a) By facilitating data routing and device addressing - b) By providing security and privacy for data - c) By enabling fast device-to-device communication - d) By connecting IoT devices directly to cloud servers - (v) Choose the most significant challenge in IoT scalability. - a) Managing the complexity of large device networks - b) Handling the volume of generated data - c) Securing device communications - d) Integrating IoT systems with traditional IT infrastructure LIBRARY Brainware University Barasat, Koikata -700125 | UU | | | | |---|---|--|-----------| | (vi) | Which protocol is specifically designed for const | trained lot devices? | | | | a) HTTP | D) COM | | | | c) FTP | d) SMTP | | | (vii) | Choose the role Artificial Intelligence plays in lo | T ecosystems. | | | | a) Al analyzes and processes data for predictive insights | b) Al enables IoT devices to commun
minimal human input | cate with | | | c) Al optimizes cloud storage for IoT- | d) Al facilitates the remote control of | devices | | (viii) | Choose the type of communication model that i applications. | s best suited for real-time IoT | | | | a) Client-Server | b) Publish-Subscribe | | | | c) Peer-to-Peer | d) Request-Response | | | (ix) | Choose the role of a feedback loop in an IoT-cor | | | | | | b) Maintain system stability | | | | a) Improve response time | d) Enhance device authentication | | | | c) Reduce data redundancy | | | | (x) | What determines the efficiency of an IoT-contro | meu system: | | | | a) The processing power of the IoT gateway | b) The network topology | | | | c) The communication protocol used | d) The type of sensor employed | | | (xi) | How does an IoT network maintain resilience ag | ainst cyber threats? | | | | a) By using encryption and secure | b) By limiting the number of devices | | | | communication protocols | connected to the network | | | | c) By ensuring that devices operate | d) By controlling access to the network | < | | | independently of each other | through a central hub | | | (xii) | Relate the importance of self-calibration in small | rt sensors. | | | | a) Enhances accuracy and reliability | b) Decreases sensitivity | | | | c) Increases manual intervention | d) Reduces signal strength | | | ان:::۱ | Demonstrate how screen printing is used in sens | - | | | (XIII) | | | | | | a) Allows rapid and scalable production | b) Requires excessive manual labor | | | | c) Has no impact on sensor performance | d) Eliminates the need for calibration | | | (xiv) | Describe the importance of encryption in IoT sec | curity. | | | | a) Ensures data confidentiality and integrity | b) Increases network congestion | | | | c) Reduces processing power | d) Slows down device communication | | | (xv) | Outline the key components of IoT security arch | itecture. | | | | a) Authentication, encryption, access control | b) Increased cloud storage | | | | c) Faster sensor response | d) Larger power consumption | | | | - 1 | | | | | Group | о-В | | | | (Short Answer Ty | | 3 x 5=15 | | | | | | | 2 A | ssess potential security vulnerabilities in IoT-enab | alad haalthcare systems and preness | (3) | | | nitigation strategies. | ned healthcare systems and propose | (3) | | | efine IoT. | | (3) | | | lentify the key components of an IoT ecosystem. | | (3) | | 5. Illustrate the IoT levels with an example. | | | | | 6. Analyze the functional differences between microcontrollers and microprocessors. | | | | | J. A | OR | | (3) | | D | emonstrate how microcontrollers interface with s | | (3) | | in | volved in the process. | serios, inginigiting the key steps | (3) | | ••• | | | | | | Group | | | | | (Long Answer Typ | | 5 x 6=30 | | | I D. HOACL LAN | ~~~ | J & U-3U | | 7. | Analyze the key components of smart sensors and their role in IoT applications. | | | |----------|---|---|---| | 8. | Develop a fabrication workflow for manufacturing high-precision sensors for environmental monitoring. | | | | 9.
10 | Evaluate the advantages and challenges of IoT in modern technological advancements. How does screen printing contribute to electrode fabrication in smart sensors? Compare the advantages of physical and chemical vapor deposition for smart sensor fabrication. | | | | 11 | | | | | 12 | Evaluate different electrode fabrication techniques and their impact on sensor
performance. | | | | | OR | | | | | Justify the selection of specific sensor fabrication techniques for different industrial applications. | | | | | Br | LIBRARY
ainware Universat, Kolkata - | • |