



## BRAINWARE UNIVERSITY

Term End Examination 2024-2025

Programme – B.Tech.(BT)-2024

Course Name – Calculus and Linear Algebra

Course Code - BBS00007

( Semester I )

Library  
Brainware University  
398, Ramkrishnapur Road, Barasat  
Kolkata, West Bengal-700125

Full Marks : 60

Time : 2:30 Hours

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

### Group-A

(Multiple Choice Type Question)

1 x 15=15

1. Choose the correct alternative from the following :

(i) If  $f(x)$  satisfies all the conditions of Rolle's theorem in  $[a,b]$ , then identify where  $f'(x)$  becomes zero.

a) only at one point in  $(a, b)$       b) at two points in  $(a, b)$

c) at least one point in  $(a, b)$       d) none of these

(ii) Select the value of  $\Gamma\left(\frac{1}{3}\right)\Gamma\left(\frac{2}{3}\right)$

a)  $\frac{2\pi}{\sqrt{3}}$       b)  $\frac{3\pi}{\sqrt{2}}$

c)  $\frac{\pi}{\sqrt{3}}$       d)  $\frac{\pi}{\sqrt{2}}$

(iii) For  $k > 0, n > 0$ , Evaluate  $\int_0^\infty e^{-kt} t^{n-1} dt =$

a)  $\frac{\Gamma(n)}{k^n}$       b)  $\frac{\Gamma(k)}{k^n}$

c)  $\frac{\Gamma(k)}{n^n}$       d)  $\frac{\Gamma(k)}{k}$

(iv) Choose the correct expression of  $\beta(m+1, n)$  for  $m > 0, n > 0$

a)  $\frac{m}{m+1}\beta(m, n)$       b)  $\frac{m}{m+n}\beta(m, n)$

c)  $\frac{n}{m+1}B(m, n)$       d)  $\frac{n}{n+1}B(m, n)$

(v) Choose the correct expression of  $\beta(m, n)$  for  $m > 0, n > 0$

a)  $2 \int_0^{\frac{\pi}{2}} \sin^{2m-1} \theta \cos^{2n-1} \theta d\theta$       b)  $2 \int_0^{\frac{\pi}{2}} \sin^{2m-1} \theta \cos^{2m-1} \theta d\theta$

c)  $2 \int_0^{\frac{\pi}{2}} \sin^{2n-1} \theta \cos^{2m-1} \theta d\theta$       d) None of these

(vi) Calculate  $\Gamma\left(\frac{1}{2}\right) =$

a)  $\pi$       b) 1  
c)  $\sqrt{\pi}$       d) None of these

(vii) The series  $\sum_{n=1}^{\infty} \frac{1}{n(p+1)}$  is divergent then select the correct value of  $p$

a)  $p \leq 0$       b)  $p > 1$   
c)  $p > 0$       d)  $p \leq 1$

(viii) Choose the correct value of  $\lim_{(x,y) \rightarrow (0,0)} \frac{x^8 - y^8}{x-y} =$

a) 0      b) 1  
c) 1/2      d) None of these

(ix) If  $u = \log \frac{x^2}{y}$  then calculate  $xu_x + yu_y =$

a)  $u$       b) 0  
c) 1      d)  $2u$

(x) Select the rank of the zero matrix

a) 0      b) 1  
c) Depends on the size of the matrix      d) Cannot be determined

(xi) If the rank of a square matrix is equal to the number of columns, then identify the type of the matrix

a) Non-invertible      b) Non-singular  
c) A row matrix      d) A column matrix

(xii) If a non-diagonalizable matrix has one eigenvalue with a multiplicity of 2, establish that

a) The matrix is singular      b) The matrix is defective  
c) The matrix is non-square      d) None of these

(xiii) Choose the correct option, for a positive definite matrix, the eigenvalues are:

a) All negative      b) All positive  
c) All zero      d) A mix of positive and negative

(xiv) Choose the correct determinant value of a  $1 \times 1$  matrix [a] from following given options

a) a      b) 1  
c) 0      d) -a

(xv) Choose matrix whose all its eigenvalues equal to zero is called:

a) Nilpotent matrix      b) Diagonal matrix  
c) Identity matrix      d) Invertible matrix

Library  
Brainware University  
398, Ramkrishnapur Road, Barasat  
Kolkata, West Bengal-700125

**Group-B**  
(Short Answer Type Questions)       $3 \times 5 = 15$

2. Define the Maclaurin Series expansion of  $e^x$ .      (3)

3. If  $f(x) = \sin(x)$  on the interval  $[0, \pi]$ , evaluate the value of  $c$  that satisfies the Mean value theorem.      (3)

4. Examine the convergence of the series  $\sum_{n=1}^{\infty} \frac{2^n - 1}{3^n}$ . (3)

5. Determine whether the set of vectors  $\{(a, b) \in \mathbb{R}^2 : 12b = 7a + 5\}$  is a vector space. (3)

6. If  $a+b+c \neq 0$  and  $\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = 0$  then illustrate that  $a = b = c$ . (3)

OR

If  $x = -4$  is a root of  $\begin{vmatrix} x & 2 & 3 \\ 1 & x & 1 \\ 3 & 2 & x \end{vmatrix} = 0$ , calculate the other roots. (3)

Library  
Brainware University  
398, Ramkrishnapur Road, Barasat  
Kolkata, West Bengal-700125

Group-C

(Long Answer Type Questions)

5 x 6=30

7. Show that every square matrix can be represented as sum of symmetric and skew symmetric matrix. (5)

8. Evaluate the inverse of the matrix  $\begin{bmatrix} 2 & -17 & 11 \\ -1 & 11 & -7 \\ 0 & 3 & -2 \end{bmatrix}$  (5)

9. For  $f(x) = \ln(x)$  on the interval  $[1, e]$  calculate the value of  $c$  satisfies the Mean value theorem. (5)

10. Define that  $\int_0^{\pi} \sin^4 x \cos^4 x \, dx = \frac{3\pi}{256}$ . (5)

11. Let  $f(x, y) = \begin{cases} \frac{(x^2 - y^2)xy}{x^2 + y^2}, & (x, y) \neq 0 \\ 0, & (x, y) = 0 \end{cases}$  from the definition calculate  $f_{xy}(0,0)$ . (5)

12. Evaluate the eigenvalues and eigenvectors of matrix  $A = \begin{pmatrix} 5 & 4 \\ 1 & 2 \end{pmatrix}$ . (5)

OR

Evaluate the kernel of the mapping  $T: \mathbb{R}^3 \rightarrow \mathbb{R}^2$  is defined by  $T(x_1, x_2, x_3) = (x_1 + x_2, x_2 - x_3)$ . (5)