

Brainware
398, Ramkrishnapur Road, Bárásat
Kolkata, West Bengal-700125

BRAINWARE UNIVERSITY

Term End Examination 2024-2025

Programme – B.Tech.(CSE)-AIML-2024/B.Tech.(CSE)-DS-2024/B.Tech.
(BT)-2024/B.Tech.(CSE)-CYS-2024/B.Tech.(EE)-2024

Course Name – Basic Electrical and Electronics Engineering

Course Code - BES00002

(Semester I)

Full Marks : 60

Time : 2:30 Hours

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group-A

(Multiple Choice Type Question)

1 x 15=15

1. Choose the correct alternative from the following :

- (i) Identify the law on which the transformer works;
 - a) Faraday's law of electromagnetic induction
 - b) Fleming's right-Hand Rule
 - c) Fleming's left-hand rule
 - d) None of these
- (ii) Choose the unilateral element from following
 - a) Resistor
 - b) Capacitor
 - c) Inductor
 - d) Diode
- (iii) Choose the unit of Resistance from the following:
 - a) Ohm
 - b) Siemens
 - c) Ohm-meter
 - d) None of these
- (iv) Identify the material with lots of free electrons from below.
 - a) Conductors
 - b) Insulators
 - c) Semiconductors
 - d) Filters
- (v) Select the event that occurs as a current through the coil of an electromagnet is reversed
 - a) direction of the magnetic field remains unchanged
 - b) direction of the magnetic field reverses
 - c) magnetic field expands
 - d) magnetic field collapses
- (vi) Choose the time period of a sine wave that goes through 10 cycles in 20 s;
 - a) 20 micro sec
 - b) 4 micro sec
 - c) 2 micro sec
 - d) 100 micro sec
- (vii) Identify the correct option for an PN junction diode.
 - a) Has low resistance in forward as well as reverse directions
 - b) Has high resistance in forward as well as reverse directions
 - c) Conductors in the forward direction only
 - d) Conducts in the reverse direction only

(viii) Identify the doping level associated with Zener breakdown in a Zener diode.

- a) Lowest
- b) Moderate
- c) High
- d) Low

(ix) State the ripple factor for a half-wave rectifier.

- a) 2
- b) 1.21
- c) 0.482
- d) 0.877

(x) Indicate the results of testing a good diode with an ohmmeter.

- a) high resistance when forward or reverse biased
- b) low resistance when forward or reverse biased
- c) high resistance when reverse biased and low resistance when forward biased
- d) high resistance when forward biased and low resistance when reverse biased

(xi) Identify which of the following is kept fixed in a transformer;

- a) Voltage
- b) Current
- c) Frequency
- d) None of these

(xii) Select the purpose of the transformer core;

- a) To provide low-reluctance path
- b) To provide high reluctance path
- c) To provide low capacitive path
- d) To provide high capacitive path

(xiii) Interpret the situation if the secondary of a current transformer is open-circuited;

- a) depends on other parameters
- b) cool as there is no secondary current
- c) hot because primary will carry heavy current
- d) hot because of heavy iron losses

(xiv) The active power consumed by a circuit is 120 W, while the apparent power consumed is 200 W. Select the value of the power factor.

- a) 0.8
- b) 0.6
- c) 0.5
- d) 0.9

(xv) Determine the output impedance of a transistor is

- a) high
- b) zero
- c) low
- d) very low

Group-B
(Short Answer Type Questions)

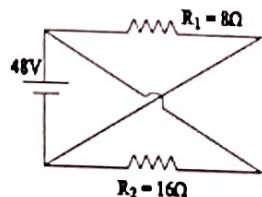
3 x 5=15

2. Explain three terminals of a transistor.

(3)

3. Explain the need for a starter in a DC motor.

(3)

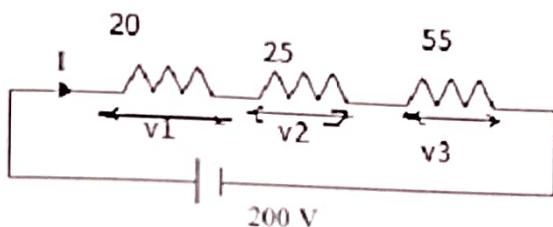

4. Calculate the electrical conductivity of an intrinsic silicon semiconductor at 300 K. The mobility of electrons (μ_n) is $1350 \text{ cm}^2/\text{V.s}$ and the mobility of the holes (μ_p) is $450 \text{ cm}^2/\text{V.s}$. The intrinsic carrier concentration (n_i) is $1.5 \times 10^{10} \text{ cm}^{-3}$.

(3)

5. Compare a half-wave and a full-wave rectifier.

(3)

6.


(3)

Calculate the current supplied by the battery in the given circuit.

Library
Brainware University
398, Ramkrishnapur Road, Barasat
Kolkata, West Bengal-700125

OR

(3)

Calculate the current through each resistor.

Group-C

(Long Answer Type Questions)

$5 \times 6 = 30$

7. Compare various types of filter circuits (L, C, LC, and π filter). (5)
8. Compare in between BJT and FET. (5)
9. Explain the Drift current and Diffusion current in a semiconductor device. (5)
10. Explain the Armature control method in DC motors (5)
11. Define node, junction, loop and mesh of a circuit. (5)
12. A transistor is connected in common emitter (CE) configuration in which collector supply is 8 V and the voltage drop across resistance RC connected in the collector circuit is 0.5 V. The value of $RC = 800 \Omega$. If $\alpha = 0.96$, determine: (i) collector-emitter voltage (ii) base current. (5)

OR

In a common base connection, $\alpha = 0.95$. The voltage drop across $2 \text{ k}\Omega$ resistance which is connected in the collector is 2V. Find the base current. (5)
