

LIBRARY Brainware University Barasat, Kolkata -700125

BRAINWARE UNIVERSITY

Term End Examination 2024-2025 Programme - B.Tech.(BT)-2024 Course Name - Numerical Methods Course Code - BBS00023 (Semester II)

Full Marks : 60	Time: 2:30 Hours
[The figure in the margin indicates full marks. Candidates are required to gi	ve their answers in their own
words as far as practicable.]	

Group-A

(Multiple Choice Type Question)

d) None of these

d) percentage error

1 x 15=15

(i)	Identify the number of significant figures in	0.03409.
	a) 5	b) 6
	c) 7	d) 4

1. Choose the correct alternative from the following:

c) round-off error

(ii) If 0.1 is approximated to 0.09, then the relative error is __. Select the correct option.

a) b) 0.11111 1 9

(iii) Select the correct option. The kind of error when 3.14 is approximate

values of π is a) inherent error b) truncation error

(iv) Select the correct answer. If the number 0.0456 is rounded-off up to five significant figures then the obtained number is .

a) 0.0456 b) 0.04560 c) 0.045600 d) None of these

(v) Select the correct answer if the number 3.45672 is rounded-off up to five significant figures then the number is

- a) 3.456 c) 3.458 b) 3.457 d) 3.4567
- (vi) Select the correct option. The round-off number of 0.8593.78 to four significant digits is
 - a) 0.8593

b) 0.9593

c) 0.8594

- d) None of these
- (vii) Identify the correct option. The accuracy attainable for the Newton-Raphson method___
- a) does not depend upon the value of the derivative f(x). b) depends upon the value of derivative of f(x).
- c) may depend upon the value of derivative of f(x).
- d) None of these.
- (viii) Select the Newton-Raphson iterative formula for finding the square root of a real number R.
 - a) $x_{i+1} = \frac{x_i}{2}$

b) $x_{i+1} = \frac{3x_i}{2}$

c) $x_{i+1} = \frac{1}{2} \left(x_i + \frac{R}{x_i} \right)$

- d) None of these.
- (ix) Identify the rate of convergence of Bisection method.
 - a) linear

b) quadratic

c) cubic

d) none of these.

(x) Select the correct option.

In Gauss Jordan method to solve AX=B, A is transferred in a__.

a) singular matrix

b) non-singular matrix

c) diagonal matrix

- d) orthogonal matrix
- (xi) Choose the correct option. Lagrange's interpolation formula for two points of interpolation represents a
 - a) parabola

b) circle

c) straight line

d) none of these.

(xii) Choose the correct option.

In divided difference, the value of any difference is __ of the order of their arguments.

a) independent

b) dependent

c) inverse

- d) none of these.
- (xiii) Choose the correct option. The Milne's corrector formula of order 4 is__.
 - a) $y_{n+1} = y_{n-1} + \frac{h}{3}(f_{n-1} + 4f_n + f_{n+1})$
- b) $y_{n+1} = y_{n-1} + \frac{4h}{3}(f_{n-1} 4f_n + f_{n+1})$
- c) $y_n = y_{n-1} + \frac{h}{3}(f_{n-1} 4f_n + f_{n+1})$
- d) None of these.
- (xiv) Choose the correct option. The Picard's iteration formula is
 - a) $y_n(x) = y_0 + \int_{x_0}^x f(x, y_{n-1}(x)) dx$
- b) $y^{(n)}(x) = y_0 + \int_{x_0}^x f(x, y^n(x)) dx$
- c) $y^{(n+1)}(x) = y_0 + \int_{x_0}^x f(x, y^{n-1}(x)) dx$
- d) None of these

(xv)	CILCOSC MI		option. Usi e of y (0.1)					
	a) 1.11				b)	1.15034	A. A. P. Marina	
	c) 1.22034				d)	1.23034	Contak, pare o his in so	
					Group-B			
				(Short Ansv	wer Type Q	uestions)	in the second second	3 x 5=15
2.	Round off th	ne numbers	s 865250 to	four signi	ificant figu	res and id	entify the relative error	c. (3)
3.	Identify the absolute en					y for x	= 12.05 and $y = 8.02$	having (3)
4.	Identify the	interval in	n which a p	ositive roo	ot of $e^x - 3$	3x = 0 lie	s.	(3)
5.	Examine th	at Δ . $\nabla = A$	$\Delta - \nabla$.					(3)
6.	Evaluate ∫	$\cos x dx$	correct up	to three sig	mificant fig	nires using	the data:	(3)
	x	0	0.2	0.4	0.6	0.8	1.0	
	cosx	- January	0.9798	0.9199	0.8228	0.6924	0.5340	
					OR			
	Evaluate ∫ ₀ ¹	$\frac{dx}{1+x^2}$ usin	g Trapezoi	dal rule tak	sing'n = 4.			(3)
					Group-C wer Type Qu	uestions)		5 x 6=30
							4	
7.	Identify th	ie relative	error and p	ercentage	error in apj	proximatir	$\log \frac{4}{3}$ to 1.33.	(5)
8.	Describe (i) Relative (ii) Percent						(5)
							LIBRARY	
							Brainware Univ	re rsity -700125

- 9. Determine the root of the equation $x^3 10 = 0$ correct to two significant figures by using Newton Raphson method and taking the initial guess $x_0 = 2$.
- (5)

10. Calculate $\Delta^2(2x+1)$, taking h=1.

(5)

- 11. Evaluate the value of y(0.1) by Runge-Kutta method of order 2 of the differential equation:
- (5)

- $\frac{dy}{dx} = x + y^2$, y(0) = 1 and h = 0.1.
- ^{12.} Evaluate the value of $\int_0^5 \frac{dx}{1+x}$ by Trapezoidal rule taking h=1, correct upto one decimal place.
- (5)

OR

Evaluate the value of y(0.4) correct to two decimal places by Euler's method of the differential equation:

 $\frac{dy}{dx} = x - y, y(0) = 1 \text{ taking } h = 0.2.$

Brainware University
Parasal, Kolkata - 700125