

DEPARTMENT OF PHARMACEUTICAL TECHNOLOGY

398. Ramkrishnapur Rd, Near Jagadighata Market, Barasat, Kolkata, West Bengal 700125, India

ABSTRACT

Glioma is an aggressive and invasive brain tumor with limited treatment success due to the presence of the blood-brain barrier and resistance to conventional chemoradiation. To address these challenges, thermoresponsive solid lipid nanoparticles (T-SLNs) were developed for the argeted and temperature-triggered delivery of 5-Fluorouracil (5-FU). Stearic acid and oleic acid ere employed as the lipid matrix, lecithin served as a biocompatible emulsifier, and Poloxamer F68 was incorporated to impart thermoresponsive behavior and stabilize the formulation. The T-SLNs were prepared by a hot homogenization-ultrasonication method and evaluated for particle size, polydispersity index (PDI), encapsulation efficiency, and phase transition behavior. Differential Scanning Calorimetry (DSC) and light transmission studies confirmed the bermoresponsive nature of the nanoparticles, with a marked transition occurring in the mild sperthermic range (42-45°C). Scanning Electron Microscopy (SEM) revealed a smooth, spherical morphology. In vitro release studies demonstrated a temperature-dependent drug lease pattern, with significantly enhanced 5-FU release at elevated temperatures, simulating localized tumor hyperthermia. Release kinetics followed Korsmeyer-Peppas and Higuchi models, indicating diffusion-dominated mechanisms. Importantly, the T-SLNs showed potential or integration with adjuvant hyperthermia and radiation therapy, wherein localized heating not anly promotes nanoparticle-triggered drug release but may also sensitize glioma cells to adjotherapy. Formulations F9 (SA:OA:L = 4:6:1) and F10 (SA:OA:L = 2:2:1) exhibited >75% release at 45°C, making them ideal candidates for thermally targeted drug delivery during syperthermia-enhanced radiotherapy.

This study presents T-SLNs as a promising multifunctional platform capable of overcoming perapeutic resistance in glioma by combining controlled chemotherapy, localized hyperthermia,