

## DEPARTMENT OF PHARMACEUTICAL TECHNOLOGY

398, Ramkrishnapur Rd, Near Jagadighata Market, Barasat, Kolkata, West Bengal 700125, India

## **ABSTRACT**

The demand for improved safety through different delivery systems has led to a growing interest in plant-based adjuvants which include polysaccharides. The medical industry shows interest in natural polysaccharides since they provide enhanced vaccine performance while minimizing side effects that chemical adjuvants commonly produce. Crude water-soluble polysaccharide (BSP) was extracted from dried Boswellia serrata gum through a procedure combining hot water extraction and ethanol precipitation and then analyzed its structure using Fourier-transform infrared spectroscopy. The typical polysaccharide structural properties were powen through FTIR band analysis by detecting 868 cm-1 and 826 cm-1 bands in all bands which represented polysaccharides. In vitro disintegration studies on prepared tablets using the polysaccharide showed significant superdisintegrant properties as compared to sodium such glycolate and crospovidone. As a result, formulations with rapid release might be descloped with this novel polysaccharide from Boswellia serrata. Also, this study investigated evaluated its potential protective effects, particularly in extending antioxidant activities of egh. In vitro antioxidant studies on prepared polymeric beads using polysaccharide activity than usual. Research revealed that the polysaccharide (BSP) demonstrates strong protective abilities so it serves as a promising because ingredient for developing safer plant-based pharmaceutical products. The results demonstrate the compound's essential value for pharmaceutical and nutraceutical applications.

Boswellia serrata, FTIR, superdisintegrant, rapid release, antioxidant,