

BRAINWARE UNIVERSITY Term End Examination 2020 - 21

Programme – Bachelor of Technology in Electronics & Communication Engineering

Course Name – Calculus

Course Code - BSC(ECE)101

Semester / Year - Semester I Time allotted : 75 Minutes **Semester / Year - Semester I**

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group-A

(Multiple Choice Type Question) 1 x 60=60

1. *(Answer any Sixty)*

(i)

If $f(x)$ satisfy all the conditions of Rolle's theorem in [a, b], then $f'(x)$ becomes zero

a)

only at one point in (a, b) c)

at two points in (a,b) d)

none of these

b)

at least one point in (a,b)

(ii)

If $f(x)$ is continuous on $[2,2+h]$ and derivable in $(2,2+h)$, then $f(2+h) = f(2) + hf'(2 + \theta h)$, where

a) b)

 $-1 < \theta < 1$ θ is any real number

c) $\qquad \qquad d)$

$$
\theta > 0 \qquad \qquad 0 < \theta < 1
$$

$$
(iii)
$$

 $\int_{-\pi}^{\pi} \sin 6x dx =$ a) 0 b) 1 c) -1 d)

none of these

 $\sqrt{\pi}$

$$
(iv)
$$

 $\int_{0}^{\infty}e^{-x^{2}}dx=$ a) b) π c) $\qquad \qquad d)$ \overline{r}

$$
\frac{\sqrt{\pi}}{2}
$$

(v)

For
$$
k > 0
$$
, $n > 0$ $\int_{0}^{\infty} e^{-kt} t^{n-1} dt =$
\na)

$$
\frac{\Gamma(n)}{k^n}
$$
\nc)

\nd) None of these

$$
\frac{\Gamma(k)}{n^n}
$$

(vi)

For
$$
m > 0
$$
, $n > 0$ $B(m+1, n) =$

a)
\n
$$
\frac{m}{m+1}B(m,n)
$$
\n
$$
\frac{m}{m}
$$
\nc)
\nd)

$$
\frac{n}{m+1}B(m,n)
$$

$$
f_{\rm{max}}
$$

 $\frac{\Gamma(k)}{k^n}$

$$
\frac{m}{m+n}B(m,n)
$$

None of these

(vii)

For $m > 0$, $n > 0$ $B(m, n) =$

a)
\nb)
\n
$$
2\int_{0}^{\frac{\pi}{2}} \sin^{2m-1}\theta \cos^{2n-1}\theta d\theta
$$

\n $2\int_{0}^{\frac{\pi}{2}}$

$$
2\int\limits_{0}^{\frac{\pi}{2}}\sin^{2n-1}\theta\cos^{2m-1}\theta d\theta
$$

None of these

(x)

If a function $f:[a,b]\to\mathbb{R}$ be continuous on $\big[a,b\big]$ and differentiable on $\big(a,b\big).$ If $f'(x) = 0$ for all $x \in (a, b)$ then the value of f is

- a) 1 b) 0
- c) $\qquad \qquad d)$

Constant None of these

(xi)

The Cauchy's form of remainder in Taylor's theorem is
a) a) b)

$$
\frac{h^{n}(1-\theta)^{(n-1)}}{(n-1)!}f^{n}(a+\theta h) \qquad \qquad \frac{h^{n}}{n}
$$

$$
\frac{h^n}{n!}f^n(a+\theta h)
$$

$$
\frac{h^n(1-\theta)^{(n-p)}}{p(n-1)!}f^n(a+\theta h)
$$

None of these

(xii)

The Lagrange's form of remainder in Maclaurin's theorem is
a) b) a) b)

$$
\frac{x^n(1-\theta)^{(n-1)}}{(n-1)!}f^n(\theta x) \qquad \qquad \frac{x^n}{}
$$

 $\frac{x^n}{n!}f^n(\theta x)$

$$
\frac{x^n(1-\theta)^{(n-p)}}{p(n-1)!}f^n(\theta x)
$$

None of these

(xiii)

$$
\int\limits_0^1\frac{1}{\sqrt{1-x^2}}\,dx=
$$

(xiv)

Convergent c) 1 d)

b)

Divergent

None of these

(xv)

(xvi)

The improper integral $\int_{1}^{\infty} \frac{1}{x(1+x^2)} dx$ is

a)

Convergent c) 1 d)

b)

Divergent

None of these

(xvii)

The improper integral $\int_{1}^{\infty} f(x) dx$, where $f(x) = \begin{cases} \frac{1}{x^2} & \text{if } x \text{ be rational } \ge 1 \\ -\frac{1}{x^2} & \text{if } x \text{ be irrational } > 1 \end{cases}$ is a) b) Convergent Divergent c) 1 d)

None of these

(xviii)

The characteristic points of the circles $(x - \alpha)^2 + y^2 = \alpha^2$ are

a) b)

$$
(\alpha, \pm a) \qquad (\pm \alpha, a)
$$

$$
c) \t\t d)
$$

$$
(\pm\alpha,-a)
$$

(xix)

The sequence
$$
\left\{\frac{1}{3^n}\right\}
$$

a)

Monotonic increasing

c)

Monotonic decreasing

(xx)

(xxi)

Second term of sequence with general term $n^2 - 4/2$ is

a) 2 b) -3

None of these

b)

Oscillatory

d)

```
None of these
```
c) 1 d) 0

(xxii)

Sum of an infinite geometric series exist only if condition on common ratio r is a) b)

 $-1 < r < 1$ $-1 \le r \le 1$ c) $\qquad \qquad d)$

$$
r \le -1, r \ge 1 \qquad \qquad r \le -1, r \ge 1
$$

(xxiii)

The Sequence $\left\{1, \frac{1}{5}, \frac{1}{5^2}, ..., \frac{1}{5^n}, ..., \infty\right\}$ is b) a) divergent oscillatory d) c) convergent none of these

(xxiv)

The sequence $\{4,4,4,...\}$ is called a

a) Monotone increasing sequence b) c) d)

Constant sequence

Monotone decreasing sequence

(xxv)

The sequence $\{x_n\}$, where $x_n = (-1)^{n-1}$, is a) b) a convergent sequence a divergent sequence c) d) None of these an oscillatory sequence (xxvi) The sequence $\{x_n\}$, where $x_n = \frac{1}{2} \{1 + (-1)^{n-1}\}$, is a sequence with a) b) 2 terms n terms c) d) No terms None of these (xxvii) The sequence $\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}, \ldots\right\}$ is a) b) Bounded Unbounded c) d) Divergent None of these (xxviii)

The sequence $\left\{\frac{1}{n}\right\}$ is

a)

Convergent sequence c)

Oscillating sequence

(xxix)

b)

Divergent sequence d)

None of these

None of these

 (xxx)

The sequence $\left\{\frac{1}{n^p}\right\}$, where $p > 0$ is a)

Null sequence c)

Constant sequence

(xxxi)

b)

Divergent sequence d)

- a) 0 b) 1
- c) 2 d)
-

None of these

(xxxii)

The sequence $\{(-1)^n\}$ is

a)

Bounded sequence c)

Convergent sequence

(xxxiii)

A convergent sequence is a)

> Bounded sequence c)

Oscillating sequence

(xxxiv)

a) 0 b) 1 c) $1/2$ d)

Unbounded sequence d)

None of these

b)

b)

Unbounded sequence d)

None of these

(xxxv)

a)

The sequence $\{-n^2\}$ is

Convergent c)

Divergent

(xxxvi)

 $\lim a^{\frac{1}{n}} = 1$ if a) b) $0 < a < 1$

 $a > 0$

(xxxvii)

The sequence $\left\{\frac{n}{n+1}\right\}$ is a)

> An unbounded sequence c) $\qquad \qquad d)$

b)

Bounded d)

None of these

 $|r|\!\leq\!1$

c) $\qquad \qquad d)$

None of these

b)

Anoscillating sequence

A convergent sequence None of these

(xxxviii)

The series $1 + a + a^2 + ...$ is convergent only when

(xxxix)

None of these

(xl)

The series $\sum u_n$, where $u_n = \sqrt{n^4 + 1} - \sqrt{n^4 - 1}$ is

c) $\qquad \qquad d)$

Absolutely divergent None of these

(xli)

For n>0, \int cos nxdx = $-\pi$ a) 1 b) 0 c) $\qquad \qquad d)$ 3π

 4π

(xlii)

Take the "odd function" out:

a) b) $f(x) = x$ $f(x) = |x|$ c) $\qquad \qquad d)$ $f(x) = e^{-|x|}$ $f(x) = x \sin x$

(xliii)

If
$$
f(x, y) = 0
$$
, then $\frac{dy}{dx} =$
\na)
\nb)
\n $\frac{f_x}{f_y}$
\nc)
\nd)

$$
-\frac{f_x}{f_y} \qquad -\frac{f_y}{f_x}
$$

(xliv)

If
$$
u = log \frac{x^2}{y}
$$
 then $xu_x + yu_y =$
\na) u
\nb) b
\nc) 1
\nd) 2u

(xlv)

If
$$
u(x, y) = yf(\frac{x^2}{y^2})
$$
 then show that $x \frac{\delta u}{\delta x} + y \frac{\delta u}{\delta x} =$
a) 0 b)

 $2u(x,y)$

c) d) 2

 $u(x,y)$

(xlvi)

 $\int\limits_{2.4}^{3.6} dx dy =$

a) 1 b) 12 c) 2 d) 0

(xlvii)

$$
\int_{0}^{1} \int_{y}^{\sqrt{y}} dx dy =
$$
\n
\na) 1/2\n
\nb) 1/6\n
\nc) 2/3\n
\nb) 1/6\n
\nd) 4/3

(xlviii)

The value of
$$
\iint_R xy(x^2 + y^2) dx dy
$$
 over $R: [0, a; 0, b]$.
\na)
\nb)
\n $ax^2/2 - x^5/30$
\nc)
\nd)
\n $ax^2/2$
\n $\frac{1}{8}a^2b^2(a^2 + b^2)$

(xlix)

Find the value of $\int \int xy dx dy$ over the area bounded by the parabola $x=2a$ and $x^2 = 4ay$, is a) b) $\frac{a^4}{4}$ $\frac{a^4}{3}$ c) $\qquad \qquad d)$

$$
\frac{a^2}{3}
$$

(l)

The value of $\iiint xyz dx dy dz$ over $R: [0,1;0,1;0,1]$ is

(li)

The value of $\iint_R x^3 y dx dy$ over the region $R : \{0 \le x \le 1; 0 \le y \le 2\}$ is a) $1/2$ b) 8/945 c) 16/45 d) 16/945

(lii)

The value of $\int (x dx - dy)$, where C is the line joining (0,1) to (1,0) is \overline{c} a) $3/2$ b) $1/2$ c) 0 d) $2/3$

(liii)

If \vec{a} . $(\vec{b} \times \vec{c}) = 0$, then the vectors \vec{a} , \vec{b} and \vec{c} are

a)

b)

d)

independent c)

collinear

none of these

coplanar

(liv)

If θ be the angle between the vectors $\vec{a} = 6\hat{i} + 2\hat{j} + 3\hat{k}$ & $\vec{b} = 2\hat{i} - 9\hat{j} + 5\hat{k}$ then

a)
\nb)
\n
$$
\theta = \cos^{-1}\left(\frac{9}{7\sqrt{110}}\right)
$$

\nc) both (a) and (b)
\nd) none of these

(lv)

If
$$
u = x^4 + 4y^3z
$$
, then $grad(u) =$
\na)
\nb)
\n $4x^3\hat{i} + 12y^2z\hat{j} + 4y^3\hat{k}$
\nc)
\nd)
\n $4x^3\hat{i} + 12y^2z\hat{j} + 4y^2\hat{k}$
\nd)
\n $4x^3\hat{i} + 12yz\hat{j} + 4y^2\hat{k}$
\n $4x\hat{i} + 12yz\hat{j} + 4y^2\hat{k}$

(lvi)

$$
\vec{A} = 2xz^{2}\hat{i} - yz\hat{j} + 3xz^{3}\hat{k} \text{ and } \phi = x^{2}yz, \text{ then } curl (curl \vec{A}) =
$$
\n(a)\n(b)\n
$$
(-4x - 9z^{2})\hat{i} + (4z + 1)\hat{k} \qquad (-4x + 9z^{2})\hat{i} + (4z - 1)\hat{k}
$$
\n(c)\n(d)\n
$$
(-4x - 9z^{2})\hat{i} - (4z + 1)\hat{k} \qquad (-4x + 9z^{2})\hat{i} - (4z + 1)\hat{k}
$$

(lvii)

If
$$
\phi(x, y, z) = xy + yz + zx
$$
, then $\vec{\nabla}\phi =$
\na)
\n $(y+z)\hat{i}+(z+x)\hat{j}+(x+y)\hat{k}$ (j
\nc)
\n $(y+z)\hat{i}-(z+x)\hat{j}-(x+y)\hat{k}$ (j

b)
\n
$$
(y+z)\hat{i}-(z+x)\hat{j}+(x+y)\hat{k}
$$
\nd)
\n
$$
(y+z)\hat{i}+(z+x)\hat{j}-(x+y)\hat{k}
$$

(lviii)

 $\nabla . \Big(\vec{E} \!\times\! \vec{F} \, \Big) \! = \!$ a) b)

 $\vec{F}.\nabla \!\times\! \vec{E}\!-\!\vec{E}.\nabla \!\times\! \vec{F}$

 $\vec{F}.\nabla \!\times\! \vec{F} - \vec{E}.\nabla \!\times\! \vec{F}$

 $\vec{F}.\nabla \!\times\! \vec{F} - \vec{E}.\nabla \!\times\! \vec{E}$

(lix)

(lx)

The sequence
$$
\left\{\frac{1}{n^2}\right\}
$$
 is

-
- c) divergent sequence d) none of these
- a) bounded sequence b) unbounded sequence
	-

