

BRAINWARE UNIVERSITY

Term End Examination 2020 - 21

Programme – Bachelor of Computer Applications

Course Name - Basic Mathematics Course Code - GEBS101

Semester / Year - Semester I

Time allotted: 75 Minutes

Full Marks: 60

The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group-A

(Multiple Choice Type Question)

1 x 60=60

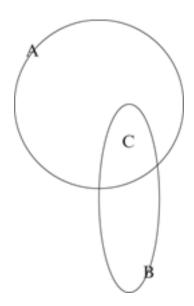
- 1. (Answer any Sixty)
- (i) The set O of odd positive integers less than 10 can be expressed by
 - a) {1, 2, 3}

b) {1, 3, 5, 7, 9}

c) $\{1, 2, 5, 9\}$

- d) {1, 5, 7, 9, 11}
- (ii) Which of the following two sets are equal?
 - a) $A = \{1, 2\}$ and $B = \{1\}$

- b) $A = \{1, 2\}$ and $B = \{1, 2, 3\}$
- c) $A = \{1, 2, 3\}$ and $B = \{2, 1, 3\}$
- d) $A = \{1, 2, 4\}$ and $B = \{1, 2, 3\}$
- (iii) Which set is equivalent to the set {2, 3, 5, 7, 11}?
 - a) {x: x is an odd number lying between 1 b) {21, 23, 25}


- and 13}
- c) {x: x is a prime number less than 12}
- d) None of these
- (iv) There are 8 students on the curling team and 12 students on the Badminton team. What is the total number of students on the two teams if three students are on both teams.
 - a) 20

b) 17

c) 15

- d) 14
- (v) The number of elements in the power set of power sets of the empty set is

a) 0	b) 1
c) 2	d) 4
(vi) Indicate which one of the following is not t	rue.
a) Identity matrix is diagonal matrix	b) Identity matrix is upper triangular matrix
c) Identity matrix is scalar matrix	d) Identity matrix is skew-symmetric matrix
(vii)	
The mode of the frequency distribution	
$x_i: 0 1 2 3 4$	
$f_i: 23 24 21 25 20$	
a) 3	b) 0
c) 1	d) 2
(viii)	
If A and B are two sets, then	$A \cup B$ represents
a)	b)
all elements in either A and B	all elements in A and B
c)	d)
all elements that are in A but not B	all sets that include A and B
(ix)	

 $A = \{3, 4, 5, 6, 7\}, B = \{5, 6, 7, 8, 9\}, C = ?$

a)

b)

 ${3, 4, 5, 6, 7, 8, 9}$

 $\{5, 6, 7\}$

c)

d)

{3, 4, 8, 9}

none of these

(x)

Which one of the following is not true?

a)

b)

$$\left(A \bigcup B\right)' = A' \bigcup B'$$

$$(A \cap B)' = A' \cup B'$$

c)

d)

$$\left(A'\right)'=A$$

$$A-B=A\cap B'$$

(xi)

If $A \cup B = B$ holds for all sets B, then

a)

b)

 $A = \phi$

A = B

c)

d)

 $A = \phi$ & A = B

None of these

(xii)

Which one of the following is true?

a)

b)

$$(B \cup A) \cap (B \cup C) = B \cup (A \cap C)$$

 $A \cap (B \cup C) = (A \cup B) \cap (A \cup C)$

c)

d)

$$A \cap (B - C) = (A \cup B) - (A \cup C)$$

 $A \cap (B - C) = (A \cup B) - (A \cup C)$ (A-B) $\cup (B - C) \cup (C - A) = (A \cup B) - (B \cap C)$

(xiii)

Which one of the following is true?

a)

b)

 $A\bigcup \phi = \phi$

 $A \cap \phi = \phi$

c)

d)

 $A \bigcup A = \phi$

 $A \cap A = \phi$

(xiv)

$n(A \cup B)$ is equal to

a)

$$n(A) + n(B) - n(A \cap B)$$

$$n(A) + n(B) + n(A \cap B)$$

c)

$$n(A) + n(B)$$

$$n(A) - n(B)$$

(xv)

If $\sec\theta = \frac{17}{8}$ and θ lies in first quadrant then $\csc\theta =$

a)

b)

 $\frac{17}{15}$

 $-\frac{17}{15}$

c)

d) None of these

15 17

(xvi)

If $cos(90^{\circ} - \theta) = \frac{1}{2}$, then the value of θ is

a)

b)

15°

40°

c)

d) 0°

(xvii)

The value of $sec(-945^{\circ})$ is

a)

b)

 $\sqrt{2}$

 $-\frac{1}{\sqrt{2}}$

c)

d)

 $-\sqrt{2}$

 $\frac{1}{\sqrt{2}}$

(xviii)

 $\sin(\alpha - 540^{\circ}) =$

a)

b)

 $\sin \alpha$

 $\cos \alpha$

c)

d)

 $-\sin \alpha$

None of these.

(xix)

The value of $\cos 13^{\circ} \sin 17^{\circ} + \cos 17^{\circ} \sin 13^{\circ}$ is

a)

 $\frac{1}{2}$

c) 0

d) None of these

(xx)

$$\frac{\sin(A-B)}{\sin A \cdot \sin B} =$$

a)

b)

cot A-cot B

cot B -cot A

c)

d)

cot A+cot B

none of these.

(xxi)

If $\tan \alpha = \frac{7}{5}$ and $\tan \beta = \frac{5}{7}$, then the value of $\cot(\alpha - \beta)$ is

a) 35

b)

 $\frac{35}{12}$

c)

d)

3 12 $-\frac{35}{12}$

(xxii)

If 90° < x < 135° and $\sin x = \frac{4}{5}$ then the value of $\sin 2x$ is

a)

b)

 $\frac{24}{25}$

23 25

c)

d)

 $\frac{1}{25}$

 $-\frac{24}{25}$

(xxiii)

 $IF \tan A + \frac{1}{\tan 2A} =$

a)

b)

cos 2A

sec2A

c)

d)

sin 2A

cosec2A

(xxiv)

If $0 \le \theta \le \frac{\pi}{4}$ and $\sin 2\theta = \frac{4}{5}$, then the value of $\tan \theta$ is

a) 2

b)

 $\frac{1}{2}$

c)

d) -2

$$-\frac{1}{2}$$

(xxv)

If $\cos x + \sin x - 1 = 0$, then $\sin 2x =$

a) 0

b) 1

c) -1

d) 2

(xxvi)

 $y = \log \tan x$ then $\frac{dy}{dx}$ is equal to

a)

b)

2sec2x

2cosec2x

c)

d)

 $2 \sec^3 x$

 $2\cos ec^3x$

(xxvii)

If, $y = 2x^3 - 15x^2 + 36x + 8$ then $\frac{dy}{dx} =$

a)

b)

 $5x^2 - 30x + 36$

 $\frac{1}{1+x^2}$

c)

d)

 $6x^2 - 30x + 36$

none of these.

(xxviii)

$$\frac{d}{dx}(\sin x^0) =$$

a)

b)

 $\cos x^0$

 $\cos x$

c)

d)

$$\cos \frac{x}{\pi}$$

$$\frac{\pi}{180}\cos x^0$$

(xxix)

If $y = \log(\log x)$, then the value of $\frac{dy}{dx}$ is

a)

b)

$$\frac{1}{\log x}$$

 $\frac{1}{x \log x}$

c)

d)

 $\frac{x}{\log x}$

None of these.

(xxx)

If $y = e^{\sin x}$, then $\frac{dy}{dx} = .$

a)

 $\sin xe^{\sin x}$

c)

d)

$$-\frac{1}{1+x^2}$$

$$\frac{1}{1+x^2}$$

(xxxi)

If $x^2 + y^2 = a^2$, then find $\frac{dy}{dx}$.

a)

b)

$$\frac{1}{1+x^2}$$

_ 1

c)

d) None of these

$$1 + x^2$$

(xxxii)

At
$$x = \frac{\pi}{4}$$
, $\frac{d}{dx}(\sec x) =$
a)

b)

$$-\sqrt{2}$$
 $\frac{1}{\sqrt{2}}$

(xxxiii)

If
$$x = a\cos t$$
 and $y = b\sin t$, then $\frac{dy}{dx} =$

$$\frac{b}{a} \cot t$$

$$-\frac{b}{a}\cot t$$

b)

$$\frac{a}{b}$$
 cot t

d)

$$\frac{b}{a} \tan t$$

(xxxiv)

If
$$y = 3\sin^2 t$$
, $x = 2\cos^2 t$, then $\frac{dx}{dy} =$

a)

$$\frac{3}{2}$$

c)

$$\frac{1}{2}$$

b)

$$-\frac{3}{2}$$

d)

$$-\frac{2}{3}$$

(xxxv)

If
$$e^x - x^y = 0$$
, then $\frac{dy}{dx}$ is

a)

$$x^y$$

$$\frac{\log x - 1}{\log x}$$

d) None of these

$$\frac{\log x - 1}{(\log x)^2}$$

(xxxvi)

The derivative of $\sin^2 x$ with respect to $\cos^2 x$ is

- a) -1
- c) sin x

- b) 2
- d) cos x

(xxxvii)

 $\lim_{x\to 0} \frac{e^{ax}-1}{\log(1+ax)}$ is equal to

- a) 1
- c) -a

- b) a
- d) None of these

(xxxviii)

 $\lim_{x\to 0} (1+2x)^{\frac{1}{x}}$ is equal to

- a) e
- c)
- \sqrt{e}

- b) 2e
- d)
- e^2

(xxxix)

If f(x) is continuous in [0,4] and if $\lim_{x\to 1} f(x) = \frac{1}{2}$ then f(1) is equal to

a)

b) 1

 $\frac{1}{2}$

c) 2

d) 3

(x1)

The function $f(x) = \tan x$ is discontinuous at $x = -\infty$

a)

b)

 $\frac{\pi}{4}$

 π

c) 0

d)

 $\frac{\pi}{2}$

(xli)

Which of the following is correct?

a)

b)

 $\int \sec^2 x dx = \tan x + c$

$$\int \sec^2 x dx = \cot x + c$$

d)

$$\int \sec^2 x dx = -\tan x + c$$

 $\mathbf{d.} \int \sec^2 x dx = -\cot x + c$

(xlii)

 $\int \sin 3x dx = k\cos 3x$ then k is equal to

a)

b)

 $-\frac{1}{3}$

 $\frac{1}{2}$

c) 3

d) None of these

(xliii)

 $\frac{d}{dx}[F'(x)] = f(x) \text{ then } \int f(x) dx \text{ is}$

a)

b)

f(x)+c

F'(x) + c

c)

d) None of these

$$f'(x)+c$$

(xliv)

$\int \frac{1}{x} (x + \frac{1}{x}) dx$ is equal to

a)

$$x-\frac{1}{x}+c$$

c)

$$1 - \frac{1}{x^2} + c$$

b)

$$x^2 - \frac{1}{x^2} + c$$

d)

$$x + \frac{1}{x} + c$$

(xlv)

Evaluate $\int_{-1}^{2} x^9 dx$

a) 102.3

c) 1024

b) 102.4

d) 0

(xlvi)

Find the value of $\int_{0}^{2} [x] dx$

a) 0

c) 2

b) 1

d) 3

(xlvii)

Co-factor of -3 in the determinant $\begin{vmatrix} 2 & -3 & 4 \\ 1 & 0 & 1 \\ 0 & -1 & 4 \end{vmatrix}$ is

- a) 4
- c) 1

- b) -4
- d) 0

(xlviii)

The value of
$$\begin{vmatrix} 1 & -2 & 3 \\ 2 & -1 & 4 \\ -2 & 3 & 1 \end{vmatrix}$$

- a) 0
- c) 19

- b) 13
- d)

none of these.

(xlix)

The matrix $\begin{bmatrix} 1 & 0 & 0 \\ 5 & 1 & 0 \\ 3 & 2 & 4 \end{bmatrix}$ is

a)

b)

a diagonal matrix

an upper triangular matrix

d)

a lower triangular matrix

a symmetric matrix

(1)

The value of $\left|-3\right|$ is

- a) 3
- c) 4

- b) -3
- d) 1

(li)

 $A = \begin{pmatrix} 2 & 9 \\ 4 & 3 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 5 \\ 7 & 2 \end{pmatrix}$, then AB-BA is

a)

b)

$$\begin{pmatrix} 43 & 4 \\ 3 & -43 \end{pmatrix}$$

 $\begin{pmatrix} 42 & 0 \\ 1 & -42 \end{pmatrix}$

c)

d)

$$\begin{pmatrix} 22 & -52 \\ 10 & 0 \end{pmatrix}$$

none of these

(lii)

If A and B are square matrices and A^{-1} , B^{-1} exist, then $(AB)^{-1}$ =

a)

$$B^{-1}.A^{-1}$$

$$A^{-1}.B^{-1}$$

 AB^{-1}

$$A^{-1}B$$

(liii)

If
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 3 \\ 2 & 0 \end{bmatrix}$$
, then $2A^{T} =$

a)

$$\begin{bmatrix} 0 & 2 & 4 \\ -2 & 6 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & -2 \\ 2 & 6 \\ 4 & 0 \end{bmatrix}$$

c)

$$\begin{bmatrix} 0 & 1 & 2 \\ -2 & 6 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & -1 \\ 1 & 3 \\ 4 & 0 \end{bmatrix}$$

(liv)

The probability of any event A satisfies

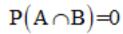
a)

$$P(A) \ge 1$$

d)

$$0 \leq P\!\left(A\right) \leq 1$$

None of these


(lv)

Two event A and B are mutually exclusive if

$$P(A \cap B) = P(A)P(B)$$

$$P(A \cup B) = P(A) + P(B)$$
c)
d)

None of these

(lvi)

Two unbiased coins are tossed . Then the probability of getting atleast one tail is

a)

b)

 $\frac{4}{3}$

 $\frac{3}{4}$

c)

d)

 $\frac{1}{3}$

none of these

(lvii)

The probability that a leap year selected at random will contain 53 Wednesdays is

a)

$$\frac{3}{4}$$

 $\frac{2}{7}$

d)

(lviii)

Two dice are thrown. Then the probability that the sum of the faces equal to 10 is

a)

$$\frac{1}{12}$$

c)

$$\frac{1}{36}$$

b)

$$\frac{1}{3}$$

d)

(lix)

Two events are independent if

a)

$$P(A \cup B) = 1$$

c)

$$P(A \cap B) = P(A)P(B)$$

b)

$$P(A \cap B) = P(A) + P(B)$$

d)

$$P(A \cap B) = 0$$

(lx)

If A and B be two events with $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{3}$ and $P(A \cup B) = \frac{2}{3}$ then $P(A \cap B) = \frac{2}{3}$

a)

b)

 $\frac{5}{6}$

6 7

c)

d)

 $\frac{1}{9}$

 $\frac{1}{6}$