

BRAINWARE UNIVERSITY Term End Examination 2020 - 21

Programme – Bachelor of Science (Honours) in Computer Science

Course Name – Mathematics-I

Course Code - GEBS102 Semester / Year - Semester I

Time allotted : 75 Minutes

Full Marks : 60

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group-A

(Multiple Choice Type Question) 1 x 60=60

1. (Answer any Sixty)

(i)

Relation $y = \log_2 x$ implies

a)	b)
$x^y = z$	$z^y = x$
c)	d)
$x^{z} = y$	$y^z = x$

(ii)

The derivative of the function $f(x) = \sin(nx)$ is

a)	b)
even function c)	odd function d)
constant function	None of these

(iii)

Logarithms having base '10' are called a)

> pure logarithms c)

natural logarithms

(iv)

The derivative of a differentiable odd function is a)

odd function c)

constant function

(v)

If $g(x) = \frac{1-x}{1+x}$ then $g(x) + g\left(\frac{1}{x}\right)$ is a) -1 c) 2

(vi)

If $f(x) = e^{2x}$ then $f(\log_e^{10}) =$

a)	10	b) 2
c)	100	d)

Common logarithms d)

infinite logarithms

b)

b)

even function d)

zero

b) 1

d) 0

20

None of these

(vii)

If
$$\phi(x) = \frac{1 - \tan x}{1 + \tan x}$$
 then $\phi\left(\frac{\pi}{4} - x\right) =$
a)
 $\tan x$
c)
 $-\tan x$

b)

d)

b)

d)

 $\sin^2 \theta$

None of these

 $\tan \pi$

 $\cot x$

(viii)

If
$$f(x) = \frac{1-x}{1+x}$$
 then $f(\cos 2\theta) =$
a)
 $\frac{1-x}{1+x}$ then $f(\cos 2\theta) =$
(a)
 $\frac{1-x}{1+x}$ then $f(\cos 2\theta) =$
(b)
 $\frac{1-x}{1+x}$ then $f(\cos 2\theta) =$
(c)
 $\frac{1-x}{1+x}$ then $f(\cos 2\theta) =$
(c)
 $\frac{1-x}{1+x}$ then $f(\cos 2\theta) =$

(ix)

$$\lim_{x \to 0} \frac{\sin 2x}{3x} =$$
a) 2/3
b) 3/2
c) 1/3
d) 1/2

(x)

$\lim_{x \to -\frac{1}{2}} \frac{2x^2 - 3x + 1}{2x - 1} =$	
a) 3/2	b) - 5/2
c) 2/3	d)
	3
(xi)	
If $\log_{x}^{81} = 4$ then x=	
a) 1	b) 2
c) 3	d)
	none of these

(xii)

If $z_1 = 1 + i$ and $z_2 = 2 + i$ then the greatest value of $|z_1 + z_2|$ is a) b) 10 $\overline{\sqrt{2} + \sqrt{3}}$ c) 0 d) $\overline{\sqrt{2} + \sqrt{5}}$

(xiii)

If
$$x + iy = (1+3i)(1+2i)(1+i)$$
 then $x^2 + y^2 =$
a) 10 b) 100

none of these

(xiv)

Which of the following is not correct? a)

> *log*₁₀10 = 1 c)

 $log_{10}1 = 0$

b)
log(2+3)=log(2 x 3)
d)
.log(1+2+3)=log1+log2+log3

(xvi)

$\lim_{x\to 0} \frac{\sin^2 x}{x}$ is equal to	
a) 0	
c) 1	

b) -1 d)

b)

none of these.

(xvii)

The fourth root of 1 are a) 1

1, 0, -1

(xviii)

If z and w are two complex numbers, then a) b) $\overline{z + w} = \overline{z} + \overline{w}$ $\overline{\overline{z + w}} = \overline{z} \cdot \overline{w}$ c) d) $\overline{z + w} = \overline{z} - \overline{w}$ $\overline{\overline{z + w}} = \overline{z}/\overline{w}$

1, -1, i, -i

b) 0

(xix)

The reciprocal of the number i is a) 1

a) 1	b) -1
c) - i	d) i

(xx)

The argument of the number -1+i is a)	b)
180 ⁰ c)	45 ⁰ d)
135 ⁰	90^{0}

(xxi)

$$(\sin 30^\circ + \cos 30^\circ) - (\sin 60^\circ + \cos 60^\circ)$$

a) -1

c) 1

d) 2

(xxii)

The value of the expression

 $\left[\operatorname{cosec} \left(75^\circ + \theta\right) - \operatorname{sec} \left(15^\circ - \theta\right) - \tan \left(55^\circ + \theta\right) + \cot \left(35^\circ - \theta\right)\right] \text{ is }$

a) 1	b) -1
c) 0	d) 2

(xxiii)

Co-efficient of x^5 in the expansion of $(1+x^2)^5 (1+x)^4$ is

a) 40	b) 50
c) 30	d) 60

(xxiv)

c)

The co-efficient of x^p and x^q (p and q are positive integers) in the expansion of $(1 + x)^{p+q}$ are

d)

a)	b)
equal C)	equal with opposite signs d)
reciprocals to each other	none of these.
(xxv)	

An improper fraction can be reduced to proper fraction by a)	b)
addition	subtraction

multiplication

division

(xxvi)

If A and B are two non-singular matrices , then $(AB)^{-1}$ equals to

a)	b)
B ⁻¹	A^{-1}
c)	d)
$B^{-1}A^{-1}$	$A^{-1}B^{-1}$

(xxvii)

If A(BC) = (AB)C, where A,B and C are three matrices, the corresponding law is called

a)	b)
Inverse law C)	Associative law d)
Cramer's law	Additive law
(xxviii)	
The diagonal elements of a Hermitian matrix are a)	b)
Complex number c)	Real numbers d)
Natural numbers	None of these.

(xxix)

The eigen values of the matrix $A = \begin{pmatrix} 5 & 3 \\ 3 & 5 \end{pmatrix}$ are		
a)	b)	
8,8 c)	8,3 d)	
8,2	0,0	
(xxx)		
the main that the set of the set	vice versa of a matrix is called the of b)	
inverse c)	transpose d)	
determinant	order	
(xxxi)		
If A be a square matrix then the trace of A is the a)	b)	
product of diagonals elements c)	sum of diagonals elements d)	
sum of row elements	sum of columns elements	
(xxxii)		
If A is a non-null square matrix then A+A ^T is a a)	b)	
symmetric matrix C)	skew-symmetric matrix d)	
null matrix	none of these	

(xxxiii)

Transpose of a rectangular matrix is a	
a)	b)
rectangular matrix	diagonal matrix
c)	d)
square matrix	scalar matrix
(xxxiv)	
The number of non-zero rows in an echelon form is called	
a)	b)
reduced echelon form	rank of a matrix
c)	d)
conjugate of the matrix	co-factor of the matrix
(xxxv)	
Two matrices A and B are multiplied to get BA if	
a)	b)
no of columns of A is equal to columns of B	no of rows of A is equal to rows of B
c)	d)
no of columns of A is equal to rows of B	no of rows of A is equal to columns of B
(xxxvi)	
The rank of a null matrix is	

a) 0	b)	1
c) 2	d)	3

```
(xxxvii)
```

If $-\lambda^3 + 6\lambda^2 - 9\lambda + 4$ is the characteristic polynomial of a matrix A then det (A) is a) 2 b) -9 c) 6 d) 4

(xxxviii)

If 2, 4, 4, 4 are all eigen values of a matrix, then the algebraic multiplicity of 4 is

a) 1	b) 2
c) 3	d) 0

(xxxix)

	(-1	0	0	0	0)	
	$\begin{pmatrix} -1 \\ 0 \end{pmatrix}$	2	0	0	0	
The eigen values of the matrix	0	0	1	0	0	are
	0	0	0	3	0	
	0	0	0	0	5)	
a)				b)		
0, 2, 3, 5, 0				-1,	-1, 2	2, 2, 3
c)				d)		
-1, 2, 1, 5, 3				0, 0), 0,	1, 3, 5

(xl)

If λ is a characteristic root of A then $\lambda + k$ is a characteristic root of

a)	b)
A+kI	A-kI
c) A	d)

None of these

(xli)

If λ is an eigen value of a non-singular matrix λ	A, then $\frac{\det(A)}{\lambda}$ is an eigen value of
a) A	b)
	adj(A)
c)	d)
A^T	A^{-1}

(xlii)

A square matrix in which all elements except at least one element

in diagonal are zeros is said to be a

a)

identical matrix c)

square matrix

null matrix

b)

d)

diagonal matrix

(xliii)

If the determinant of a matrix is zero, then the matrix is a)

singular matrix c)

can't say

(xliv)

Let A be a nilpotent matrix of order n then a)

 $A^{n} = 0$ c) A = nI d)

none of these.

(xlv)

What is 'a' if $B = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$	$\binom{4}{a}$ is a singula	ır matrix?
a) 5		b) 6
c) 7		d) 8

(xlvi)

If a function f(x) satisfies all the conditions of Rolle's Theorem on[a,b], then f'(x)

.

vanishes

a)	b)
everywhere on (a,b)	at exactly one point of (a,b)
c)	d)

b)

nonsingular matrix d)

none of the mentioned.

none of these

b) nA = 0

at least at one point of (a,b)

none of these

(xlvii)

If f(x) = |x|, then for interval [-1, 1], f(x)

a)

b)

satisfied all the conditions

of Rolle's Theorem

satisfied all the conditions of

Cauchy Mean Value Theorem

c)

d)

none of these

does not satisfied the

conditions of Mean

Value Theorem

(xlviii)

If differentiation of any function is zero at any point and constant at other points then it means?

a)

Function is parallel to	Function is parallel to y-axis at
x-axis at that point	that point
c)	d)
Function is constant	Function is discontinuous at that point

(xlix)

Temperature of a rod is increased by moving x distance from origin and is given by equation $T(x) = x^2 + 2x$, where x is the distance and T(x) is change of temperature w.r.t distance. If, at x = 0, temperature is 40 C, find temperature at x=10.

a)	b)
472 C c)	473 C d)
474 C	475 C

(l)

The series $\sum_{n=1}^{\infty} \frac{1}{n^{(p+1)}}$ is divergent if	
a)	b) p > 1
$\overline{p \leq 0}$	
c) $p > 0$	d)
	$p \leq 1$

(li)

bf t(2;3) rhgicoinskifted to the point (-1,2) without changing the directions of the axes, the coordinates a) b)

(-1,3) (3,-1)

(lii)

$r = \frac{12}{2 - \cos \theta}$ is the equation of	
a)	b)
ellipse c)	circle d)

parabola

hyperbola

/1	•	٠	٠	`
(]	1	1	1)
(1		T	T	1

To remove the terms containing x and y of degree one from $ax^2 + bxy + cy^2 + px + qy + r = 0$, the needed transformation is

a)	b)
translation c)	rotation d)
translation followed by rotation	none of these

(liv)

If the equation $7x^2 - 2xy + 7y^2 - 16x + 16y - 8 = 0$ is transformed to the equation of the form $AX^2 + BY^2 + C = 0$, then the value of A and B are

a)	b)
8, 6	6, 8
c)	d)

Both (a) & (b)

None of these

(lv)

The centre of $5x^2 - 6xy + 5y^2 - 5y^2 - 5xy + 5y^2 - 5y^2 - 5xy + 5y^2 - 5x^2 - 5xy + 5y^2 - 5x^2 - 5xy + 5y^2 - 5xy + 5xy + 5y^2 - 5x^2 - 5xy + 5x^2 - 5xy + 5x^2 - 5xy + 5x^2 - 5xy + $	4x - 4y - 4 = 0 is
a)	b)
(1,1) c)	(-1,1) d)
(-1,1)	(-1,-1)

(lvi)

 $r = 3\sin\theta + 4\cos\theta$ is the equation of

a)	b)
a circle c)	a parabola d)
an ellipse	a hyperbola

(lvii)

After rotation of coordinate axes by an angle $\frac{\pi}{4}$, if the coordinates of a point becomes (0, $\sqrt{2}$), then original coordinates are a) b)

(lviii)

The length of latus rectum of a parabola whose focus is (2,-3) and directrix is 5x-12y+6=0 is a) 6 b) 7 c) 8 d) 9

(lix)

The equation of the locus of the point whose distance from y-axis

is half the distance from origin is

a)	b)
$x^2 + 3y^2 = 0$	$x^2 - 3y^2 = 0$
c)	d)
$\overline{3x^2 + y^2} = 0$	$3x^2 - y^2 = 0$
(lx)	
log ₁₀ 49 =	
a) 1	b) 2
c) 3	d) 4