

BRAINWARE UNIVERSITY

Term End Examination 2020 - 21

Programme – Bachelor of Technology in Computer Science & Engineering

Course Name - Digital Electronics

Course Code - ESC(CSE)302

Semester / Year - Semester III

Time allotted: 75 Minutes

Full Marks: 60

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group-A (Multiple Choice Type Question) $1 \times 60 = 60$ 1. (Answer any Sixty) (i) Karnaugh map is used: a) To draw the digital circuit layout b) To simplify logical function c) To locate different gates in a digital d) None of these circuit (ii) How many AND gates are required for a 8-to-1 multiplexer? a) 5 b) 7 c) 8 d) 6 (iii) Full subtractor is used to perform subtraction of . a) 4 bits b) 3 bits c) 2 bits d) 8 bits (iv) Which is the prohibited state/condition in S-R latch and needs to be

avoided due to unpredictable nature of output?

a)
$$S = R = 0$$

b)
$$S = 0$$
, $R = 1$

c)
$$S = 1$$
, $R = 0$

d)
$$S = R = 1$$

(v)

In 1:4 demultiplexer, if $S_0 = 1 \& S_1 = 1$, then the output will be _____.

a)	b)
Y_0	Y_1
c)	d)
Y_2	Y_3
(vi) The largest two digit hexadecimal m	umber is .
a)	b)
$(FE)_{16}$	(FD) ₁₆
c)	d)
(FF) ₁₆	(EF) ₁₆
(vii) The expression Y=(A+B)(B+C)(C+A	A) shows the operation.
a) AND	b) POS
c) SOP	d) NAND
(viii) How many AND & OR gates are re	equired to realize $Y = CD + EF + G$?
a) 4	b) 5
c) 3	d) 2
(ix) A full adder logic circuit will have _	<u>.</u>
a) Two inputs and one output	b) Three inputs and three outputs
c) Two inputs and two outputs	d) Three inputs and two outputs
(x) The gates required to build a half add	er are
a) EX-OR gate and NOR gate	b) EX-OR gate and OR gate
c) EX-OR gate and AND gate	d) EX-NOR gate and AND gate
(xi) Exclusive-OR (XOR) logic gates can	be constructed from what other logic