

BRAINWARE UNIVERSITY Term End Examination 2020 - 21

Programme – Bachelor of Science (Honours) in Computer Science

Course Name – Mathematics-III

Course Code - GEBS302 Semester / Year - Semester III

Time allotted : 75 Minutes

Full Marks : 60

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group-A

	(Multiple Choice Type Question)	1 x 60=60
1. (Answer any Sixty)		
(i)		
The degree of the polynomial $ax +$	$b_{is 1}$ if and only if	
a)	b)	
a = 0	<i>a</i> ≠ 0	
c)	d)	
<i>b</i> = 0	$b \neq 0$	

1	٠	٠	>
1	1	1	۱
١.	I	I	,
1			/

If f(x), g(x) are polynomials of degree m and n respectively. Then the degree of f(x) + g(x) is a) mn b) m+n

c) d)

No conclusion

undefined

(iii)

Which of the following is not a factor of a) x+1b) $(x+1)^{2}$ $(x+1)^{3}$ $f(x) = x^{3} + 3x^{2} + 3x + 1?$ b) $(x+1)^{2}$ $(x+1)^{4}$

(iv)

If $\mathbf{p}(\mathbf{x}) = \mathbf{a}\mathbf{x}^2 + \mathbf{b}\mathbf{x} + \mathbf{c}\mathbf{j}$ is a polynomial of degree 2, then a) b)	$\frac{c}{a}$ is equal to
0 1 c) d)	

Sum of zeroes

Product of zeroes

(v)

The zeroes of the polynomial	$f(x) = 4x^2 - 12x + 9$	are:
a)		b)
3/2, -3/2		3/2, 3/2
c)		d)
2/3, 3/2		-3/2, 2/3

(vi)

The value of k, if
$$(x - 1)$$
 is a factor of
b) 2

(vii)

A quadratic polynomial equation whose one root is 6 and sum of the roots is 0, is

a)	b)
$x^2 - 12x + 36 = 0$	x ² -36=0
c)	d)
x ² -36=0	$x^2 - 6x = 0$

(viii)

Every algebraic equation of degree 'n' has exactly

a)	b)
n roots	n-1 roots
c)	d)
n+1 roots	None of these

(ix)

A bicubic equation is of degree

a)	4	b)	6
c)	9	d)	

Degree not assigned

(x)

Maximum number of negative roots of the equation	$x^{3} + x -$	$3 = 0_{is}$
a) 0	b)	1
c) 2	d)	3

(xi)

Maximum number of complex roots of a cubic equation is

a)	b)
0	1
c)	d)
2	3

The equation whose roots are double of those of the equation $x^3 + 2x - 3 = 0$ is a) b)

$x^3 + 8x - 3 = 0$	$x^3 + 4x - 12 = 0$
c)	d)
$x^3 + 8x - 24 = 0$	None of these

(xiii)

$$S = \{(x, y, 0) | x, y \in \mathbb{R}\}$$

is a subspace of \mathbb{R}^3 then dim(S) is
b) 3
c) 5
d) None of these

(xiv)

Let α, β, γ be three linearly independent vectors in a vector space V over R, where R is the set of all real numbers. If $c\alpha + d\beta + e\gamma = \theta$, where θ is the zero vector in V then the value of c, d, e are respectively.

(xv)

$S = \begin{cases} x_1 \\ 0 \end{cases}$	$ \begin{pmatrix} 0 \\ x_2 \end{pmatrix} x_1, x_2 \in \mathbb{R} $, then dim(S) is		
a) 2		b)	3
c) 5		d)	None of these

(xvi)

Which of the following is not a subspace of R^2 ?

a)

 $\{(x,0): x \in R\}$ $\{(0, y): y \in R\}$ $(x,1): x \in R\}$ $\{(x,1): x \in R\}$ $\{(x,y): x = y; x, y \in R\}$

b)

(xvii)

Let V and W be two vector spaces and $T: V \rightarrow W$ is a linear mapping, then T is injective if and only if

Ker T= $\{\theta\}$

d) None c)

Ker T=V

(xviii)

Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation defined by T(x, y, z) = (x - y, x - z), then the dimension of the nullspace of T is

a)	0	b)	1
c)	2	d)	3

(viv)

(X1X)	
Let A and B be two subspaces of a vector space V, then	I. Contraction of the second se
a)	b)
$A \cap B$ is a subspace of V	both $A \cap B$ and $A \cup B$ are subspaces of V.
c)	d)
$A \cup B$ is a subspace of V	neither $A \cap B$ nor $A \cup B$ are subspaces of V.
(xx)	

a) b)

finite basis

c)

finite elements

Ker T= $\{0\}$

d) None of these

no basis

Which of the following is not linear transformation?

(xxi)

a) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}:$ T(x, y) = (3x - y, 2x)c) $T: \mathbb{R} \rightarrow \mathbb{R}^{2}: T(x) = (5x, 2x)$ $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}: T(x, y, z) = (x, 0, z)$ (xxii) A liner mapping $T: \mathbb{V} \rightarrow \mathbb{W}$ is injective if and only if

A liner mappingis injective if and only ifa)b)T is surjectiveKer $T = \{\theta\}$ c)d)Im $T = \{\theta\}$ Ker $T \neq \{\theta\}$

(xxiii)

Let $T: V \rightarrow W$ be a liner transformation and rank(T)=m, then a) b) dim(V) = m dim(Ker T) = m c) d)

$$\dim(\operatorname{Im} T) = m \qquad \qquad \dim(W) = m$$

(xxiv)

$$M_1: T: \mathbb{R}^3 \to \mathbb{R}^2, T(x, y, z) = (y - 1, x + z)$$
$$M_2: T: \mathbb{R}^2 \to \mathbb{R}, T(x, y) = 2xy$$
$$M_3: T: \mathbb{R}^3 \to \mathbb{R}^2, T(x, y, z) = (|y|, 0)$$

Consider the mapping

Which of the above is a linear transformation?

a) b)

$$M_2$$
 and M_3 only M_3
c) d)

 $_{\rm all}~M_{\rm 1},M_{\rm 2}~{\rm and}~M_{\rm 3}$

None of these

(xxv)

The number of vectors present in the basis of the vector space
$$\begin{cases} \begin{bmatrix} x & 0 \\ x & y \end{bmatrix} : x, y \in \mathbb{R} \\ is \\ b) & 2 \\ c) & 3 \end{cases}$$
 b) 2
d) 0

(xxvi)

Suppose u and v belong to a vector space V. Then simplified form of

E = 5(2u - 3v) + 4(7v + 8)			
a)	b)		
10u - 13v + 32	42 <i>u</i> +13 <i>v</i>		
c)	d)		
u + v	None of these		
(xxvii)			
$M = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$ Let $V = M_{2,2}$. The coordinate vector [A] of $A = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$	-5 7 relative to S where		
$S = \left\{ \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \right\}_{is}$			
a)	b)		
[7,-1,-13,10]	[7,1,13,10]		
c)	d)		
[-7,1,13,-10]	Both [7,-1,-13,10] and [-7,1,13,-10]		

(xxviii)

Define $T: \mathbb{R}^2 \to \mathbb{R}^2$ by $T(a_1, a_2) = (a_1, -a_2)$. Then

a)

b)

T is called the reflection about the y -axis

T is called the reflection about the x -axis

c)

T is called the projection on the x -axis

T is called the projection on the y -axis

(xxix)

Let V and W be vector spaces, and let $T: V \rightarrow W$ be linear. If $N(T) = \{0\}$ then a) b) T is injective T is surjective c) d) T is bijective Can not be decided (XXX)

If $A^2 = A$, then its Eigen values are either	
a)	b)
0 or 2	1 or 2
c)	d)
0 or 1	Only 0

(xxxi)

lf λ≠0	is an Eigen value of a matrix A then the matrix A^T has an Eigen value	
a)	b)	
λ	- <i>λ</i>	
c)	d)	

Can Not be determined

 $\frac{1}{\lambda}$

(xxxii)

If $V = R^3$ be equipped with inner product $(x, y) = x_1y_1 + 2x_2y_2 + 3x_3y_3$. In this inner $u = \begin{bmatrix} 1\\ 1\\ \frac{1}{\sqrt{3}} \end{bmatrix}, v = \begin{bmatrix} 0\\ \frac{1}{2}\\ \frac{1}{\sqrt{3}} \end{bmatrix}$ product space (V, (...)) then the value of the inner product of a) b) $\frac{2}{\sqrt{2}}$ c) 2 d) $\frac{\sqrt{3}}{2}$

(xxxiii)

What is the value of k so that the vectors (1,-2,-3) and (2,k,4) are orthogonal

a)	-5	b)	5
c)	-10	d)	10

(xxxiv)

If λ is the only Eigen value (real or complex) of an $n \times n$ matrix A then det A= a) b)

$$λ$$
 $λ^n$
c) d)
 $nλ$ $nλ^{n-1}$

(xxxv)

An orthogonal matrix A has eigen values of 1, 2 and 4. The trace of the matrix A^{T} is

a)	7/4	b) 1/7
c)	7	d) 4/7

(xxxvi)

$ \begin{pmatrix} 2 & -1 \\ -4 & 5 \end{pmatrix} $ are	
a)	b)
-1 and 1	1 and 6
c)	d)
2 and 5	4 and -1

(xxxvii)

If V denotes the vector space of $n \times n$ real skew symmetric matrices, then dim V=

a)

$$n^{2} - n$$
b)

$$n - 1$$
d)

$$\frac{n(n+1)}{2}$$

$$\frac{n(n-1)}{2}$$

(xxxviii)

a)

The direction cosines of a line which makes equal angles with the coordinates axes are

$$\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, -\frac{1}{$$

c) Both of these

d) None of these

b)

(xxxix)

If a line has the direction ratios -18, 12, -4, then what are its direction cosines?

a)	b)
$\frac{9}{11}, \frac{6}{11}, \frac{2}{11}$	$-\frac{9}{11}, -\frac{6}{11}, -\frac{2}{11}$
c)	d)
$-\frac{9}{11},\frac{6}{11},-\frac{2}{11}$	None of these
(xl)	
The points (2, 3, 4), (-1, -2, 1), (5, 8, 7)	
a)	b)
makes an equilateral triangle	are collinear
c)	d)
makes an right angular triangle	None of these

(xli)

Equation of the straight line passing through x_1, y_1, z_1 whose direction cosines are l, m, n is

a)

$$\frac{x - x_{1}}{l} = \frac{y - y_{1}}{m} = \frac{z - z_{1}}{n}$$
b)

$$\frac{x - l}{x_{1}} = \frac{y - m}{y_{1}} = \frac{z - n}{z_{1}}$$
c)

$$\frac{x}{l} = \frac{y}{m} = \frac{z}{n}$$

$$\frac{x}{x_{1}} = \frac{y}{y_{1}} = \frac{z}{z_{1}}$$

The angle between the pair of lines $\frac{x+3}{3} = \frac{y-1}{5} = \frac{z+3}{4} \text{ and } \frac{x+1}{1} = \frac{y-4}{1} = \frac{z-5}{2}$

d)

 $\cos^{-1}\left(\frac{8\sqrt{3}}{5}\right)$

None of these are false

(xliii)

c)

The shortest distance between the lines $\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$ and $\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1}$ is a) b)

$$\sqrt{29}$$
 $-\sqrt{29}$
c) d)
 $2\sqrt{29}$ $-2\sqrt{29}$

(xliv)

The equation of the plane which makes intercepts a, b, c on x, y and z axes, respectively is

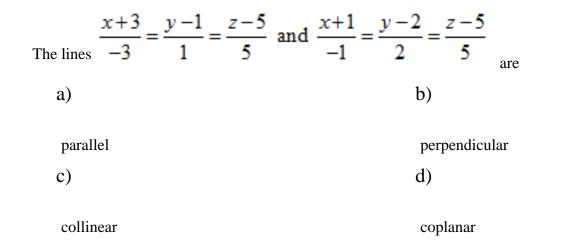
a)	b)
ax + by + cz = 1	$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$
c)	d)
x + y + z = abc	ax + by + cz = 0

(xlv)

The equation of the plane with intercepts 2, 3 and 4 on the x, y and z-axis respectively is

a) $\frac{x}{2} + \frac{y}{3} + \frac{z}{4} + 1 = 0$ b) $\frac{x}{2} + \frac{y}{3} + \frac{z}{4} = 0$ c) $\frac{x}{2} + \frac{y}{3} + \frac{z}{4} = 1$ none of these

(xlvi)



The two planes $a_1x + b_1y + c_1z + d_1 = 0$ and $a_2x + b_2y + c_2z + d_2 = 0$ are parallel if a) b) $\frac{a_1}{a_2} + \frac{b_1}{b_2} + \frac{c_1}{c_2} = 0$ $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ c) d) $a_1a_2 + b_1b_2 + c_1c_2 = 0$ $a_1a_2 = b_1b_2 = c_1c_2$

(xlviii)

The direction cosines of the normal to the plane z=2 are

a)	b)
1,0,0	0,1,0
c)	d)

0,0,1 1,1,0

(xlix)

The general solution of xp + yq = z for an arbitrary function ϕ is a) b) $\phi\left(\frac{x}{y}, xy\right) = 0$ c) d) $\phi\left(\frac{x}{y}, \frac{x}{z}\right) = 0$ $\phi\left(xy, z\right) = 0$

	1	`
(L)
ľ		1

The particular integral of $\begin{pmatrix} D^2 + 3DD' + 2D'^2 \end{pmatrix} z = x + y$ is a) b) $\frac{(x+y)^2}{9}$ $\frac{(x+y)^3}{36}$ c) d) $\frac{(x+y)^3}{125}$ $\frac{(x+y)^3}{6}$

(li)

The general solution of
$$(D^2 + 2DD' + D'^2)z = e^{2x+3y}$$
 is
a) b)

$$z = \phi_1(y - x) + x\phi_2(y - x) \qquad z = \phi_1(y - x) + x\phi_2(y - x) + \frac{1}{5}e^{2x + 3y} + \frac{1}{15}e^{2x + 3y}$$

 $z = \phi_1(y - x) + (1 + x)\phi_2(y - x) + \frac{1}{25}e^{2x + 3y}$

$$z = \phi_1(y-x) + x\phi_2(y-x) + \frac{1}{25}e^{2x+3y}$$

(lii)

The PDE $2y^2u_{xx} - 4x^2yu_{xy} + 2x^4u_{yy} - 2u_x + 4u_y = x^2yz^3$ can be classified as a) b) Parabola Ellipse c) d) Hyperbola Circle

(liii)

The PDE $x \frac{\partial^2 z}{\partial x^2} + y \frac{\partial^2 z}{\partial y^2} = 0$ a) b) hyperbolic for x > 0, y < 0 elliptic for x > 0, y < 0c) d) hyperbolic for x > 0, y > 0 none of these

(liv)

When solving a 1-dimensional wave equation using variable separation method, we get the solution if

a) b)

k is positive c)	k is negative d)
k is 0	k can be anything
(lv)	
The PDE $r^2 + 2s - t^2 = 0$ is of order	
a)	b)
1	2
c)	d)
3	None of these

A partial differential equation has

a)	b)
one independent variable	two or more independent variables
c)	d)

more than one dependent variables

equal number of dependent and independent variables

(lvii)

If $f(x, y)$	$=$ sin(xy)+x ² ln(y) find f_{yx} at (0, $\frac{\pi}{2}$)
a)	b)
33	0
c)	d)

(lviii)

If $f(x,y) = \frac{x+y}{y}$, then $x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} =$ a) **b**) 0 1 c) d) 2 3

(lix)

 $x^{3}yz^{3}\frac{\partial z}{\partial x} + xy^{3}z^{2}\frac{\partial z}{\partial y} = \sin\left(xy + z\right)$ is The differential equation a) **b**)

a linear PDE of order one

c)

a quasi-linear PDE of order one d)

a semi-linear PDE of order one

a semi-linear PDE of order two

(lx)

 $x\left(\frac{\partial z}{\partial x}\right)^2 + y\frac{\partial z}{\partial x}\frac{\partial z}{\partial y} = xyz$ The differential equation is b) a)

a linear PDE of order one

a non-linear PDE of order one

d)

1

c)

a linear PDE of order two

a non-linear PDE of order two