

BRAINWARE UNIVERSITY

Term End Examination 2020 - 21

Programme – Bachelor of Science (Honours) in Computer Science Course Name – Algebra, Geometry and Probability

> Course Code - BCS304C Semester / Year - Semester III

Time allotted : 85 Minutes

Full Marks: 70

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group-A

(Multiple Choice Type Question)		1 x 70=70
1. (Answer any Sevent	y)	
(i) If $p(x) = ax^2 + bx + c$, then	n is equal to	
a) 0	b) 1	
c) Sum of zeroes	d) Product of zeroes	

(ii) A quadratic polynomial whose one zero is 6 and sum of the zeroes is 0, is

a) $x^2 - 6x + 2$	b) x2 – 36
c) x2 – 6	d) x2 – 3

(iii) The value of k, if (x - 1) is a factor of 4x3 + 3x2 - 4x + k, is a) 1 b) 2

c) -3 d) 3

(iv) If x + 2 is a factor of x3 – 2ax2 + 16, then value of a is
a) 3
b) 1
c) 4
d) 2

(v) The polynomial of type ax2 + bx + c, a = 0 is of type
a) linear
b) quadratic
c) cubic
d) Biquadratic

(vi) The polynomial $px^2 + qx + rx^4 + 5$ is of type

a) linear	b) quadratic
c) cubic	d) Biquadratic

b)

(vii)

The zeroes of the polynomial $f(x) = 4x^2 - 12x + 9$ are: a)

$\frac{3}{2},\frac{3}{2}$	$-\frac{3}{2}, -\frac{3}{2}$
c)	d)

(viii)

Which one is not a polynomial

a) b)

$$4x^2 + 2x - 1$$
 $y + \frac{3}{y}$

$$x^3 - 1$$
 $y^2 + 5y + 1$

(ix)

If $p(x) = ax^2 + bx + c$ and $a + c = b$, then one a)	e of the zeroes is b)
b a	<u>с</u> а
c)	d)
<u></u> a	<u>-b</u> a

(x)

Every algebraic equation of degree 'n' has exactly

a)	b)
n roots	n-1 roots
c)	d) None of these
n+1 roots	

(xi)

The roots of the equation $x^3 - 3x^2 + 4 = 0$, when two roots are equal are

a)	b)
2,2,-1	3,3,-1
c)	d)
2,1,1	1,2,2

1	٠	٠	>
1 v	1	1	۱.
۱A	I	I	,
\			/

The remainder when $4x^4 - 10x^2 + 1$ is divided by (x+2) is

- a) 24 b) 25
- c) 32 d) 2

(xiii)

The polynomial $x^{m} + 1$ is divisible by (x+1) if a) b)

n is odd	n is even
c)	d) None of these

n is any number

(xiv)

If f(x) and it's first (m-1) derived functions all vanish for x=a, then the factor of f(x) is

b)
$(x+a)^m$
d) None of these

(xv)

 x^m

	e equation 4	. 3. 2.		
$\alpha, \beta, \gamma, \delta$ the roots of the	a ₀ x -	$+a_1x^{-}+a_2x^{-}+a_3$	$x + a_4 = 0$, then $\alpha + \beta + \beta$	$+\gamma + \delta =$

a) b)

$$-\frac{a_1}{a_0} \qquad \qquad \frac{a_1}{a_0}$$
c) d)

$$\frac{a_2}{a_2} \qquad \qquad a_3$$

$$\overline{\mathbf{a}_0}$$
 $\overline{\mathbf{a}_0}$

(xvi)

If α be a multiple root of the polynomial equation f(x) = 0 of order *r*, then α be a multiple root of the polynomial equation f'''(x) = 0 of order a) b) r-3 c) c) d) None of these r-1

(xvii)

If the origin is shifted to the point (-1,2) without changing the directions of the axes, the coordinates of (2,3) becomes

a)	b)
(1,3) c)	(3,1) d)
(-1,3)	(3,-1)

(xviii)

The angle through which the axes must be rotated to remove the xy term from $7x^2 + 4xy + 3y^2 = 0$ is

a) b)

π	π
	2

c)	d)
$\frac{\pi}{4}$	$\frac{\pi}{8}$

(xix)

$4x^2 - 5xy + y^2$	+2x+y-2=0	represents
a)		

a circle a parabola c) d)

an ellipse a pair of straight lines

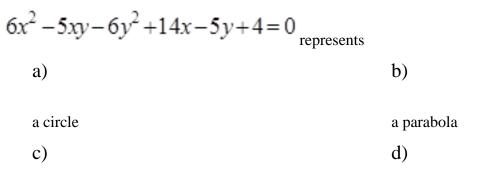
b)

(xx)

If $AX^2 + BY^2 + C = 0$ be the transformed equation of $5x^2 - 6xy + 5y^2 - 4x - 4y - 4 = 0$, then the value of C is a) b) 4 -4 c) 8 d) -8 (xxi) The point on the conic $\frac{15}{r} = 1 - 4\cos\theta$ a) b)

(5, (5,

$$\frac{2\pi}{3}$$
,
$$\frac{4\pi}{3}$$
, d) None of these


Both (5,
$$\frac{2\pi}{3}$$
) and
(5, $\frac{4\pi}{3}$)

$$r = \frac{12}{2 - \cos \theta}$$
 is the equation of
a)
b)
ellipse
c)
d)
parabola
hyperbola

(xxiii)

To remove the terms containing x and y of degree one from $ax^2 + bxy + cy^2 + px + qy + r = 0$, the needed transformation is a) b) translation c) d) None of these translation followed by rotation

(xxiv)

an ellipse a pair of straight lines

(xxv)

The centre of 5:	$x^2 - 6xy + 5y^2 - 4x - 4y - 4 = 0$	is
a)		b)
(1,1)		(-1,1)
c)		d)
(1,-1)		(-1,-1)

(xxvi)

$r = 3\sin\theta + 4\cos\theta$ is the equation	of
a)	b)
a circle c)	a parabola d)
an ellipse	a hyperbola

(xxvii)

After rotation of coordinate axes by an angle

 $\frac{\pi}{4}$, if the coordinates of a point becomes (0, $\sqrt{2}$

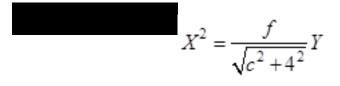
), then original coordinates are

a)	b)
(1,1) c)	(-1,1) d)
(-1,0)	(-1,-1)

The coordinates of the point remains same under the change of the coordinate axes by the rigid rotation 4

$x' = \frac{4}{5}x - \frac{5}{5}y + 2$	$y' = \frac{3}{5}x + \frac{4}{5}y - 2$, the point is
a)		b)
(4,3)		(4,2)
c)		d)
(3,2)		(3,3)

(xxix)


The reduced canonical form of the conic $(c^{2}+d^{2})(x^{2}+y^{2}) = (cx+dy+2f)^{2}_{is}$ a)
b)

$$Y^2 = \frac{4f}{\sqrt{c^2 + d^2}} X$$

$$X^2 = \frac{4f}{\sqrt{c^2 + d^2}}Y$$

c)

$$X^2 = \frac{f}{\sqrt{c^2 + d^2}}Y$$

(xxx)

a)

The latus rectum of the conic $(c^2 + d^2)(x^2 + y^2) = (cx + dy + 2f)^2$ is b)

$$\frac{f}{\sqrt{c^2 + d^2}}$$
c)
$$\frac{4f}{\sqrt{c^2 + d^2}}$$
d)

$$\frac{f}{\sqrt{c^2 + 4^2}} \qquad \qquad \frac{f}{\sqrt{3^2 + d^2}}$$

(xxxi)

The direction cosines of the $y - axis_{are}$

a)	b)
1,1,1 c)	1,0,0 d)
0,0,1	0,1,0

(xxxii)

If the direction ratios of a straight line are -18,12,-4, then the direction cosines are

a)	t
$\frac{9}{11}, \frac{6}{11}, \frac{2}{11}$	-
c)	Ċ
$\frac{9}{11}, \frac{6}{11}, -\frac{2}{11}$	

a)

c)

Which one of the followings is correct

if α, β, γ are the direction angles of a straight line, then $\alpha + \beta + \gamma \neq 2\pi$.

if l,m,nbe the direction cosines of a straight line, then

(xxxiv)

The angle between two diagonals of a cube is

a) b)
$$\frac{\pi}{6}$$
 $\frac{\pi}{4}$ c) d)

$$\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$$
 $\cos^{-1}\left(\frac{1}{3}\right)$

b)

$$\frac{9}{11}, \frac{6}{11}, -\frac{2}{11}$$

d) None of these

b)

if $\alpha_{*}\beta_{*}\gamma$ are the direction angles of a straight line, then $\alpha + \beta + \gamma = 2\pi$.

d) None of these

The equation of the straight line which is parallel to the x - axis is

a)

$$\frac{x - x_1}{0} = \frac{y - y_1}{a} = \frac{z - z_1}{a}, a \neq 0$$
b)

$$\frac{x - x_1}{a} = \frac{y - y_1}{0} = \frac{z - z_1}{0}, a \neq 0$$
c)

$$\frac{x - x_1}{0} = \frac{y - y_1}{a} = \frac{z - z_1}{0}, a \neq 0$$

$$\frac{x - x_1}{0} = \frac{y - y_1}{0} = \frac{z - z_1}{a}, a \neq 0$$

The direction ratios of the straight line 3x - 2 = 2y + 1 = 2z - 4 are

a)	b)
$\frac{1}{3}, -\frac{1}{2}, \frac{1}{2}$	$-\frac{1}{3}, \frac{1}{2}, \frac{1}{2}$
c)	d)
$\frac{1}{3}, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{3}, \frac{1}{2}, -\frac{1}{2}$

(xxxvii)

The equation of the straight line passing through the point

(5, 2, 7) and which is parallel to

the y-axis is

a) b)

$$\frac{x-5}{b} = \frac{y-2}{0} = \frac{z-7}{b}, \ b \neq 0$$

$$\frac{x+5}{b} = \frac{y+2}{0} = \frac{z+7}{b}, \ b \neq 0$$
c)
$$\frac{x-5}{0} = \frac{y-2}{b} = \frac{z-7}{0}, \ b \neq 0$$

$$\frac{x+5}{0} = \frac{y+2}{b} = \frac{z+7}{0}, \ b \neq 0$$

(xxxviii)

If the straight line
$$\frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z_1}{c}$$
 be parallel to the $z - axis$, then
a) b)

$$a = c = 0$$
 and $b \neq 0$

$$a = b = 0 \text{ and } c \neq 0$$

d)
$$b = c = 0 \text{ and } a \neq 0$$
$$a = b = c = 0$$

(xxxix)

The two straight lines
$$\frac{x - x_1}{l_1} = \frac{y - y_1}{m_1} = \frac{z - z_1}{n_1}$$
 and
$$\frac{x}{l_2} = \frac{y}{m_2} = \frac{z}{n_2}$$
 are perpendicular, then
a)
b)

$$l_1 l_2 + m_1 m_2 + n_1 n_2 = 1$$

$$l_1 l_2 + m_1 m_2 + n_1 n_2 = 0$$

$$d)$$

$$\frac{l_1}{l_2} = \frac{m_1}{m_2} = \frac{n_1}{n_2} \qquad \qquad \frac{l_1}{l_2} = \frac{m_1}{m_2} = -\frac{n_1}{n_2}$$

The distance of the point (1, 1, 1) from x - axis is

The straight line
$$\frac{x-2}{3} = \frac{y+1}{4} = \frac{z-2}{12}$$

a) intersects the plane $x-2y+z=20$ at the point
b)
(8, 7, 26) (-8, 7, 26)
c) d)
(8, -7, 26) (8, 7, -26)

(xlii)

If the two straight lines
$$\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{-k}$$
 and

then	$\frac{x-1}{k} = \frac{y-4}{2} = \frac{z-5}{1}$ be coplanar,
a)	b)
k =1 or −1	$k = 0 \ or \ -3$
c)	d)
$k = 3 \ or \ -3$	$k = 0 \ or \ -1$

(xliii)

The distance between the planes x + 2y - 2z = 1 and 2x + 4y - 4z + 5 = 0 is

a)	b)
1 unit	$\frac{6}{7}_{unit}$
c)	d)
$\frac{7}{6}$ unit	$\frac{5}{7}_{\text{unit}}$

(xliv)

The foot of the perpendicular from the point (1, 1, 2) upon the plane 2x - 2y + 4z + 5 = 0

is

a) b)

$$\left(\frac{1}{12}, \frac{25}{12}, \frac{2}{12}\right) \qquad \left(-\frac{1}{12}, \frac{25}{12}, -\frac{2}{12}\right)$$

d) None of these

$$\left(\frac{1}{12}, \frac{25}{12}, -\frac{2}{12}\right)$$

(xlv)

c) 0

c)

Which of the following	divides a	group of	data in	to four s	subgroups?

a)	b)
Percentiles	Deciles
c)	d)
Median	Quartiles
(xlvi)	
Relation between mean, median and mode is	
a)	b)
Mode=3 Median -2 mean	Mode=3 Median +2 mean
c)	d)
Mode=2 Median -3 mean	Mode=2 Median +3 mean
(xlvii)	
The Arithmetic Mean of $x - 2$, 10, $x + 3$, 7	is 9 .Then the value of x is
a) 10	b) 9

d) 11

(xlviii)

The standard deviation of the datas 5,1,7,2,6,3 is (a) 4.66	(b) 2.16 (c) 1.47 (d) none of these.
a)	b)
4.66	2.16
c)	d) None of these
1.47	
(xlix)	
The standard deviation of the datas -3,-6,-1,-4,-8,-11,-15 i	s a positive no
a)	b)
True	False
c) Both True and False	d) None of these
(1)	
The variance of 1,5,6 is	
a)	b)
4.67	9.1
c)	d)
0.067	3.67
(li)	
The median and mode of the observations : 7,4,10,15,7,3,5	5,2,9,12 are
a)	b)

7.4 and 7 8.4 and 7

(lii)

Two dice are thrown simultaneously, the probability of getting a pair of 1 is

a)	b)
1 36	$\frac{1}{2}$
c)	d)
$\frac{1}{3}$	1 6

If $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{3}$ and $P(A \cap B) = \frac{1}{4}$, then the value of $P(A \cup B) =$ $\frac{3}{7}$ $\frac{6}{7}$ c) 1 d) $\frac{7}{12}$

(liv)

The probability $P(a \le X \le b)$ (where F(x) is the distribution function of the random variable X) is defined by

a)

$$F(b)-F(a)$$

$$F(b)+F(a)$$
c)

$$F(a)-F(b)$$

$$F(a)F(b)$$

(lv)

If for a random variable X ,
$$Var(X) = 1$$
, then $Var(2X+3)_{is}$

(lvi)

The mean of the Binomial distribution

mean of the Binomial distribution
a) 4
$$B\left(10, \frac{2}{5}\right)$$
 b) 6

(lvii)

If F(x) is the distribution function of a random variable, then a) b) F(x) is continuous at all points F(x) is monotonic decreasing c) d) $F(-\infty) = 1$ $F(\infty) = 1$

(lviii)

If	$P(A+B) = \frac{2}{7}$ then the probability of $P(\overline{A}, \overline{B})$	is	
	a)	b)	
	$\frac{1}{7}$	$\frac{2}{7}$	
	c)	d)	None of these
	$\frac{5}{7}$		

(lix)

The probability of any event A satisfies

a) b) $P(A) \ge 1 \qquad P(A) < 0$

d) None of these

 $0 \leq P(A) \leq 1$

(lx)

c)

When two perfect coins are tossed simultaneously, the probability of getting atleast one head is

(lxi)

A bag contains 5 Red, 4 Black balls. 2 balls are drawn at random, the probability that thay match is

a)	b)
$\frac{2}{9}$	$\frac{4}{9}$
c)	d)

$$\frac{5}{9}$$
 $\frac{7}{9}$

In rolling two fair die, the probability of getting equal numbers or numbers with an even product is

a)	b)
$\frac{5}{6}$	$\frac{1}{6}$
c)	d) None of these
$\frac{3}{4}$	

(lxiii)

If \overline{A} is the complement of the event A, then a) b) $P(\overline{A}) = 1 - P(A)$ $P(\overline{A}) = P(A)$ c) d) None of these $P(\overline{A}) = 1 + P(A)$

(lxiv)

Two unbiased coins are tossed . Then the probability of getting atleast one tail is

b)

a)

$\frac{4}{3}$	$\frac{3}{4}$
c)	d) None of these
$\frac{1}{3}$	

(lxv)

A die is thrown once , then the probability of obtaining a 'six' is

a)	b)
$\frac{1}{3}$	$\frac{1}{2}$
c)	d) None of these
$\frac{1}{6}$	

If	$P(A) = 0.2, P(B) = 0.4, P(A \cup B) = 0.6$ a)	then A and B are b)
	mutually exclusive c)	independent d)
	exhaustive	complement of each other

(lxvii)

Of 6 men in a room 3 have blue eyes. If 2 of them are selected at random , the probability that both have blue eyes is

a)	b)
$\frac{4}{5}$	$\frac{1}{5}$
c)	d)
$\frac{1}{11}$	$\frac{2}{9}$

(lxviii)

The probability of all possible outcomes of a random experiment is always equal to

a)	b)
One	Zero
c)	d) All of these

Infinity

(lxix)

What is the probability of getting a sum 9 from two throws of dice.

a)	b)
1/3	1/9
c)	d)
1/12	2/9

(lxx)

In a throw of dice what is the probability of getting number greater than 5

a)	b)
1/6	1/3
c) 0	d) 1