

# **BRAINWARE UNIVERSITY**

# Term End Examination 2020 - 21

# Programme – Diploma in Electronics & Communication Engineering

Course Name – Industrial Electronics I

Course Code - DECE504

Semester / Year - Semester V

Time allotted: 85 Minutes

Full Marks: 70

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

# Group-A

| (Multiple Choice Type Question) 1 x 70=7  1. (Answer any Seventy)  (i) Which of the following devices does not belong to the transistor family?  a) IGBT  b) MOSFET  c) GTO  d) BJT |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| (i) Which of the following devices does not belong to the transistor family?  a) IGBT  b) MOSFET                                                                                    | 0 |
| a) IGBT b) MOSFET                                                                                                                                                                   |   |
|                                                                                                                                                                                     |   |
| c) GTO d) BJT                                                                                                                                                                       |   |
|                                                                                                                                                                                     |   |
| (ii) In a power transistor, is the controlled parameter.                                                                                                                            |   |
| a) VCE b) VBE                                                                                                                                                                       |   |
| c) IB d) IC                                                                                                                                                                         |   |
| (iii) In a power transistor, is the controlling parameter.                                                                                                                          |   |
| a) VCE b) VBE                                                                                                                                                                       |   |
| c) IB d) IC                                                                                                                                                                         |   |
| (iv) For a power transistor, if the base current IB is increased keeping VCE constant, then                                                                                         |   |
| a) IC increases b) IC decreases                                                                                                                                                     |   |
| c) IC remains constant d) none of these                                                                                                                                             |   |
| (v)                                                                                                                                                                                 |   |

# The value of $\beta$ is given by the expression

| a) IC/IB                                                                    | b) IC/IE                                                                            |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| c) IE/IC                                                                    | d) IE/IB                                                                            |
|                                                                             |                                                                                     |
| (vi)                                                                        |                                                                                     |
| For a power transistor, if the forward curre                                | ent gain $\alpha = 0.97$ , then $\beta = ?$                                         |
| a) 0.03                                                                     | b) 2.03                                                                             |
| c) 49.24                                                                    | d) 32.33                                                                            |
| (vii) For a power transistor, which of the follow                           | ving relations is true?                                                             |
| a) Ie>Ic>Ib                                                                 | b) Ib>Ic>Ie                                                                         |
| c) Ic>Ie>Ib                                                                 | d) Ie=Ib                                                                            |
| (viii) The instantaneous power loss during the oby                          | delay time of a transistor is given                                                 |
| a) Ic Vce                                                                   | b) Ib Vbe                                                                           |
| c) Ic Vbe                                                                   | d) Ib Vce                                                                           |
| (ix) A 1mv of i/p gives an output of 1V, the vol                            | ltage gain as such would be                                                         |
| a) 0.001                                                                    | b) 0.0001                                                                           |
| c) 1000                                                                     | d) 100                                                                              |
| (x) Choose the correct statement                                            |                                                                                     |
| a) A transistor will remain on as long the the base current is applied      | b) A transistor remains on after a high to low pulse is applied at the base         |
| c) A transistor will remain on as long the the collector current is applied | d) A transistor remains on after a high to<br>low pulse is applied at the collector |
|                                                                             |                                                                                     |

| (xi) A thyristor (SCR) is a                                        |                                                              |
|--------------------------------------------------------------------|--------------------------------------------------------------|
| a) P-N-P device                                                    | b) N-P-N device                                              |
| c) P-N-P-N device                                                  | d) P-N device                                                |
| (xii) Choose the false statement.                                  |                                                              |
| a) SCR is a bidirectional device                                   | b) SCR is a controlled device                                |
| c) In SCR the gate is the controlling terminal                     | d) SCR are used for high-power applications 1280µs           |
| (xiii) For an SCR in the forward blocking mode                     | e (practically)                                              |
| a) leakage current does not flow                                   | b) leakage current flows from anode to cathode               |
| c) leakage current flows from cathode to anode                     | d) leakage current flows from gate to anode                  |
| (xiv) For a forward conducting SCR device, as voltage is increased | the forward anode to cathode                                 |
| a) the device turns on at higher values of gate current            | b) the device turns on at lower values of gate current       |
| c) the forward impedance of the device<br>goes on increasing       | d) the forward impedance of the device<br>goes on decreasing |
| (xv) Usually the forward voltage triggering met SCR because        | thod is not used to turn-on the                              |
| a) it increases losses                                             | b) it causes noise production                                |
| c) it may damage the junction & destroy the device                 | e d) relatively it's an inefficient method                   |
| (xvi) The forward break over voltage is maxim                      | um when                                                      |
| a)                                                                 | b) Gate current = 0                                          |
|                                                                    |                                                              |

| Gate current = $\infty$                                                                           |                                                     |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| c)                                                                                                | d) It is independent of gate current                |
| Gate current = $-\infty$                                                                          |                                                     |
| (xvii) The value of anode current required to m<br>SCR even though the gate signal is removed is  |                                                     |
| a) holding current                                                                                | b) latching current                                 |
| c) switching current                                                                              | d) peak anode current                               |
| (xviii) are semiconductor thyristor do                                                            | evices which can be turned-on                       |
| a) LGTOs                                                                                          | b) LASERs                                           |
| c) MASERs                                                                                         | d) LASCRs                                           |
| (xix) For an SCR the total turn-on time consists and iii) Spread time During the delay time the   | s of i) Delay time ii) Rise time                    |
| a) anode current flows only near the gate                                                         | b) anode current rises from zero to very high value |
| c) losses are maximum                                                                             | d) anode to cathode voltage is zero                 |
| (xx) For an SCR the total turn-on time consists and iii) Spread time During the rise time the     | of i) Delay time ii) Rise time                      |
| a) anode current flows only near the gate                                                         | b) anode current rises from zero to very high value |
| c) losses are maximum                                                                             | d) anode to cathode voltage is zero                 |
| (xxi) For an SCR the total turn-on time consists and the iii) Spread time The spread time interva | •                                                   |
| a) the value of gate current                                                                      | b) junction temperature                             |
|                                                                                                   |                                                     |

| c) area of the cathode                                                                                                                                                                                                                     | d) area of the anode                                                     |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--|
| (xxii) To avoid commutation failure                                                                                                                                                                                                        |                                                                          |  |
| a) circuit turn-off time must be greater than<br>the thyristor turn-off time                                                                                                                                                               | b) circuit turn-off time must be lesser than the thyristor turn-off time |  |
| c) circuit turn-off time must be equal to the thyristor turn-off time                                                                                                                                                                      | d) none of these                                                         |  |
| (xxiii) The area under the curve of the gate char                                                                                                                                                                                          | racteristics of thyristor gives the                                      |  |
| a) total average gate current                                                                                                                                                                                                              | b) total average gate voltage                                            |  |
| c) total average gate impedance                                                                                                                                                                                                            | d) total average gate power dissipation                                  |  |
| (xxiv) Higher the magnitude of the gate pulse                                                                                                                                                                                              |                                                                          |  |
| a) lesser is the time required to inject the charges                                                                                                                                                                                       | b) greater is the time required to inject the charges                    |  |
| c) greater is the value of anode current                                                                                                                                                                                                   | d) lesser is the value of anode current                                  |  |
| (xxv) For an SCR, the gate-cathode characterist power dissipation is 0.5 watts. Find Ig                                                                                                                                                    | ic has a slop of 130. The gate                                           |  |
| a) 0.62 A                                                                                                                                                                                                                                  | b) 620 mA                                                                |  |
| c) 62 mA                                                                                                                                                                                                                                   | d) 6.2 mA                                                                |  |
| (xxvi) Latching current for an SCR is $100 \text{ mA}$ , DC source of $200 \text{ V}$ is also connected from the SCR to the L load. Compute the minimum width of the gate pulse required to turn on the device. Take $L = 0.2 \text{ H}$ . |                                                                          |  |
| a) 50 micro-sec                                                                                                                                                                                                                            | b) 100 micro-sec                                                         |  |
| c) 150 micro-sec                                                                                                                                                                                                                           | d) 200 micro-sec                                                         |  |
| (xxvii) From the two transistor (T1 & T2) analocurrent of SCR is in the equivalent                                                                                                                                                         |                                                                          |  |
| a) the sum of both the base currents                                                                                                                                                                                                       | b) the sum of both the collector current                                 |  |
| c) the sum of base current of T1 & collector                                                                                                                                                                                               | d) the sum of base current of T2 & collector                             |  |

(xxviii)

Latching current for an SCR is 100 mA, a dc source of 200 V is also connected to the SCR which is supplying an R-L load. Compute the minimum width of the gate pulse required to turn on the device. Take L=0.2 H & R=20 ohm both in series.

a) 62.7 micro-sec

b) 100.5 micro-sec

c) 56.9 micro-sec

d) 81 micro-sec

(xxix) A fully controlled converter uses

a) diodes only

b) thyristors only

c) both diodes and thyristors

d) none of these

(xxx) A step-down delta-star transformer, with per-phase turns ratio of 5 is fed from a 3-phase 1100 V, 50 Hz source. The secondary of this transformer is connected through a 3-pulse type rectifier, which is feeding feeding an R load. Find the average value of output voltage.

a) 220 V

b) 257 V

c) 650.08 V

d) 206 V

(xxxi) For a 3-phase 6-pulse diode rectifier, has Vml as the maximum line voltage value on R load. The peak current through each diode is

a) Vml/2R

b) 2Vml/R

c) Vml/R

d) Insufficient Data

(xxxii) A 3-phase bridge rectifier charges a 240 V battery. The rectifier is given a 3-phase, 230 V supply. The current limiting resistance in series with the battery is of 8 ohm. Find the average value of battery charging current.

a) 12.56 A

b) 8.82 A

c) 9.69 A

d) 6.54 A

| (xxxiii) For a single phase, full bridge, diode reference. With $R=10$ ohm & the inductance continues conduction, the average and rms value | L) large enough to maintain                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| a) 7.85 A, 8 A                                                                                                                              | b) 10.35 A, 7.85 A                                               |
| c) 10.35 A, 14.6 A                                                                                                                          | d) 8 A, 8 A                                                      |
| (xxxiv) The rectification efficiency for B-2 typ rectifiers are & respectively.                                                             | e & M-2 type full wave diode                                     |
| a)                                                                                                                                          | b)                                                               |
| $8/\pi \& 4/\pi$                                                                                                                            | $4/\pi \& 8/\pi$                                                 |
| c)                                                                                                                                          | d)                                                               |
| $8/\pi \& 8/\pi$                                                                                                                            | $4/\pi \& 4/\pi$                                                 |
| (xxxv) SPMS are based on the princi                                                                                                         | ple.                                                             |
| a) Phase control                                                                                                                            | b) Integral control                                              |
| c) Chopper                                                                                                                                  | d) MOSFET                                                        |
| (xxxvi) is used for critical loads wh cause a great deal of inconvenience.                                                                  | ere temporary power failure can                                  |
| a) SMPS                                                                                                                                     | b) UPS                                                           |
| c) MPS                                                                                                                                      | d) RCCB                                                          |
| (xxxvii) To make a signal diode suitable for hig carrying applications with minimum losses,                                                 |                                                                  |
| a) a lightly doped n layer is grown between<br>the two p & n layers                                                                         | b) a heavily doped n layer is grown between the two p & n layers |
| c) a lightly doped p layer is grown between<br>the two p & n layers                                                                         | d) a heavily doped p layer is grown between the two p & n layers |

| (xxxviii) The V-I Characteristics of the diode                                                    | lie in the                                       |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------|
| a) 1st & 2nd quadrant                                                                             | b) 1st & 3rd quadrant                            |
| c) 1st & 4th quadrant                                                                             | d) Only in the 1st quadrant                      |
| (xxxix) A diode is said to be reversed biased                                                     | when the                                         |
| a) cathode is positive with respect to the anode                                                  | b) anode is positive with respect to the cathode |
| c) cathode is negative with respect to the anode                                                  | d) both cathode and anode are negative           |
| (xl) If V & I are the forward voltage & current across the diode would be                         | t respectively, then the power loss              |
| a) V/I                                                                                            | b) V2 I2                                         |
| c) I2 V                                                                                           | d) VI                                            |
| (xli) Even after the forward current reduces to continues to conduct in the reverse direction for | •                                                |
| a) resistance of the diode                                                                        | b) high junction temperature                     |
| c) stored charges in the depletion region                                                         | d) none of these                                 |
| (xlii) In an AC-DC converter, a diode might b                                                     | e used as a                                      |
| a) voltage source                                                                                 | b) phase angle controller                        |
| c) freewheeling Diode                                                                             | d) filter                                        |
| (xliii) When the p-n junction diode is reversed depletion region                                  | I biased, the width of the                       |
| a) increases                                                                                      | b) decreases                                     |
| c) remains Constant                                                                               | d) none of these                                 |
| (xliv) A triac can be considered as:                                                              |                                                  |
| a) Two SCRs connected in anti-parallel                                                            | b) Two transistors corrected in antiparallel     |

| with a common gate                                                      |                                                                |
|-------------------------------------------------------------------------|----------------------------------------------------------------|
| c) Two SCRs connected in parallel with a common gate                    | d) Two SCRs connected in parallel with two gates               |
| (xlv) A triac is semiconductor device acting                            |                                                                |
| a) As a diode in the forward direction and SCR in the reverse direction | b) As an SCR in both the directions                            |
| c) As diode in both the directions                                      | d) As an SCR in one direction and diode in the other direction |
| (xlvi) Auxiliary commutation is also known as                           |                                                                |
| a) Class A commutation                                                  | b) Class C commutation                                         |
| c) Class D commutation                                                  | d) None of these                                               |
| (xlvii) In the equilibrium state, the barrier poter diode is            | ntial across a unbiased silicon                                |
| a) 0.3 V                                                                | b) 0.7 V                                                       |
| c) 1.3 V                                                                | d) 0 V                                                         |
| (xlviii) IGBT possess                                                   |                                                                |
| a) low input impedance                                                  | b) high input impedance                                        |
| c) high on-state resistance                                             | d) second breakdown problems                                   |
| (xlix) The three terminals of the IGBT are                              |                                                                |
| a) base, emitter & collector                                            | b) gate, source & drain                                        |
| c) gate, emitter & collector                                            | d) base, source & drain                                        |
| (l) In IGBT, the p+ layer connected to the colle                        | ctor terminal is called as the                                 |
| a) drift layer                                                          | b) injection layer                                             |
| c) body layer                                                           | d) collector Layer                                             |
|                                                                         |                                                                |

| (li) The controlling parameter in IGBT is the    |                                              |
|--------------------------------------------------|----------------------------------------------|
| a) IG                                            | b) VGE                                       |
| c) IC                                            | d) VCE                                       |
| (lii) The voltage blocking capability of the IGB | T is determined by the                       |
| a) injection layer                               | b) body layer                                |
| c) metal used for the contacts                   | d) drift layer                               |
| (liii) The structure of the IGBT is a            |                                              |
| a) P-N-P structure connected by a MOS gate       | b) N-N-P-P structure connected by a MOS gate |
| c) P-N-P-N structure connected by a MOS gate     | d) N-P-N-P structure connected by a MOS gate |
| (liv) The static V-I curve of an IGBT is plotted | with                                         |
| a) Vce as the parameter                          | b) Ic as the parameter                       |
| c) Vge as the parameter                          | d) Ig as the parameter                       |
| (lv) In an IGBT, during the turn-on time         |                                              |
| a) Vge decreases                                 | b) Ic decreases                              |
| c) Vce decreases                                 | d) None of these                             |
| (lvi) The approximate equivalent circuit of an I | GBT consists of                              |
| a) a BJT & a MOSFET                              | b) a MOSFET & a MCT                          |
| c) two BJTs                                      | d) two MOSFETs                               |
| (lvii) An IGBT is also know as                   |                                              |
| a) MOIGT (Metal oxide insulated gate             | b) COMFET (Conductively modulated            |
| transistor)                                      | FET)                                         |
| c) GEMFET (Grain modulated FET)                  | d) All of these                              |
|                                                  |                                              |

| (lviii) The body of an IGBT consists of a                                                                |                                            |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------|
| a) p-layer                                                                                               | b) n-layer                                 |
| c) p-n layer                                                                                             | d) metal                                   |
| (lix) At present, the state-of-the-art semiconduction manufactured using                                 | ctor devices are begin                     |
| a) Semiconducting Diamond                                                                                | b) Gallium-Arsenide                        |
| c) Germanium                                                                                             | d) Silicon-Carbide                         |
| (lx) The GTO can be turned off                                                                           |                                            |
| a) by a positive gate pulse                                                                              | b) by a negative gate pulse                |
| c) by a negative anode-cathode voltage                                                                   | d) by removing the gate pulse              |
| (lxi) A GTO can be represented by two transis of both transistors are a1 and a2 respectively. A requires | •                                          |
| a) low value of a1 and a2                                                                                | b) low value of a1 and high value of a2    |
| c) high value of a1 and low value of a2                                                                  | d) high values of a1 and a2                |
| (lxii) Latching current for the GTOs is<br>(Conventional thyristors).                                    | as compared to CTs                         |
| a) more                                                                                                  | b) less                                    |
| c) constant                                                                                              | d) cannot be said                          |
| (lxiii) In case of the two-transistor model (T1 & the anode-short is placed between the                  | & T2) of GTO with anode-short,             |
| a) emitter of T1 & T2                                                                                    | b) emitter of T1 & base of T2              |
| c) emitter of T1 & base of T1                                                                            | d) emitter of T1 & collector of T2         |
| (lxiv) The Programmable Unijunction Transist conducting when the                                         | or (PUT) turns on & starts                 |
| a) gate voltage exceeds anode voltage by a                                                               | b) anode voltage exceeds gate voltage by a |

|                                                                                                                  | certain value                                                                               | certain value                                    |
|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------|
|                                                                                                                  | c) gate voltage equals the anode voltage                                                    | d) gate is given negative pulse w.r.t to cathode |
|                                                                                                                  | (lxv) From the following list of devices, choose for a fixed-value of anode-cathode voltage | e the device that only turns-on                  |
|                                                                                                                  | a) PUT                                                                                      | b) SCR                                           |
|                                                                                                                  | c) SUS                                                                                      | d) BJT                                           |
|                                                                                                                  | (lxvi) The SCS (Silicon Controlled Switch) is a                                             | a                                                |
|                                                                                                                  | a) two terminal device                                                                      | b) three terminal device                         |
|                                                                                                                  | c) four terminal device                                                                     | d) five terminal device                          |
| (lxvii) The SCS is a four layer, four terminal thyristor. Can be turned on by                                    |                                                                                             |                                                  |
|                                                                                                                  | a) the anode gate                                                                           | b) the cathode gate                              |
|                                                                                                                  | c) either of the gates                                                                      | d) gating both the gates together                |
| (lxviii) Which of the following devices provide complete isolation between triggering circuit and power circuit? |                                                                                             |                                                  |
|                                                                                                                  | a) PUT                                                                                      | b) LASCR                                         |
|                                                                                                                  | c) SUS                                                                                      | d) DIAC                                          |
|                                                                                                                  | (lxix) The TRIAC can be represented by                                                      |                                                  |
|                                                                                                                  | a) two SCRs in anti-parallel                                                                | b) two SCRs in parallel                          |
|                                                                                                                  | c) two diodes in anti-parallel                                                              | d) two diodes in parallel                        |
|                                                                                                                  | (lxx) The TRIAC's terminals are                                                             |                                                  |
|                                                                                                                  | a) gate, anode, cathode                                                                     | b) MT1, MT2, gate                                |
|                                                                                                                  | c) gate1, gate2, anode, cathode                                                             | d) MT1, MT2, gate1, gate2                        |
|                                                                                                                  |                                                                                             |                                                  |