BRAINWARE UNIVERSITY **Term End Examination 2022** Programme – M.Sc.(BT)-2022 Course Name - Cell biology **Course Code - MBTC103** (Semester I) Full Marks: 60 Time: 2:30 Hours [The figure in the margin indicates full marks. Candidates are required to give their answers in their own **Group-A** words as far as practicable.] 1 x 15=15 | | (iviuitiple Choice | rype Question) | 1 X 15: | | |--|---|--|---|--| | 1. | Choose the correct alternative from the following | : | | | | (i) Which among the following is incorrect about plastids? | | | | | | (ii) | a) These are the organelles present only in plant cell and bear color imparting pigments c) Chromoplasts contain carotenoid pigments and provide red to orange color to the flowers and fruits Cytoskeletal filaments are polymers of | b) Plastids are of three kinds
leucoplasts, chromoplasts d) Chloroplast is a single menorganelles with stroma where stack of thyllakoids called | and chloroplasts
mbrane bound
nich contains a | | | (iii) | a) proteinsc) deoxyribonucleic acidsWhat is Ubiquitin? | b) ribonucleic acids
d) carbohydrates | | | | | a) Protein kinase | b) Protease | | | | | c) Component of the electron transport system | d) Protein that tags another proteolysis | protein for | | | (iv) | Which of the following is an incorrect statement protein sorting? | | ed to | | | | a) Subcellular localization is an integral part of protein functionality | b) Many proteins exhibit fun
being transported to certa
of the cell | • | | | | c) All the proteins exhibit functions after being transported to certain compartments of the cell | d)
Protein sorting is also kno
targeting | wn as protein | | b) weak, hydrophobic d) strong, hydrophilic (v) The signal sequences have a _____ consensus but contain some specific features. a) weak, hydrophilic c) strong, hydrophilic They all have a _____ core region preceded by one or more positively charged residues. | (vi) | The signal sequences are typically residues such as arginines as well as hydroxyl residues such as charged residues. | | | |---------------|--|---|------------------------------| | (vii) | a) 28 to 80, positively, negativelyc) 28 to 80, negatively, positivelyPosttranslational modification of many eukaryoti | b) 300 to 800, negatively, positively d) 300 to 500, positively, negatively c proteins begins in the | | | (viii) | a) Endoplasmic reticulumc) ChloroplastsThe antibiotic aided in elucidating the steps of presented in step t | b) Mitochondria d) Nucleus otein glycosylation is | | | (ix) | a) Streptomycinc) PenicillinHow many amino acid residues are there in ubiqu | b) Tunicamycin
d) Crocin
uitin? | | | (x) | a) 72c) 74What are the two subassemblies of 26S proteaso | b) 73
d) 76
me? | | | (xi) | a) 20S core particle and 19S regulatory particlec) 18S core particle and 19S regulatory particleWhich is the correct order of transport of protein | b) 20S regulatory particle and 19S core p
d) 20S core particle and 18S regulatory p
in a secretory pathway? | | | | a) Protein synthesized in the cytoplasm-SER lumen-RER lumen-cis Golgi-median Golgitrans Golgi-vesicles-fusion of vesicles with plasma membrane-exocytosis c) Protein synthesized in the cytoplasm-vesicles -SER lumen-RER lumen-cis Golgimedian Golgi-trans Golgi-fusion of vesicles with plasma membrane-exocytosis | b) Protein synthesized in the cytoplasm-lumen-cis Golgi-median Golgi-trans G vesicles-fusion of vesicles with plasma membrane-exocytosis d) Protein synthesized in the cytoplasm-lumen-trans Golgi -median Golgi-cis G vesicles-fusion of vesicles with plasma membrane-exocytosis | olgi-
a
RER
Golgi - | | (xii) | Nuclear localization signal is rich in | - | | | (xiii) | a) Tryptophan and histidinec) Glutamine and asparagineIn the plasma membrane, the best method to stu proteins is | b) Serine and threonined) Lysine and argininedy the properties of integral membrane | | | | a) atomic force microscopy | b) freeze-fracture analysis and electron microscopy | | | (xiv) | c) cryo-sectioning and electron microscopy
Which of these structures are visible under the m | d) all of the above icroscope at the end of prophase? | | | (xv) | a) Nucleolusc) Golgi bodiesIn which phase does the nuclear envelope disintender | b) Endoplasmic reticulumd) Astersgrate? | | | | a) Telophase
c) Metaphase | b) Prophase
d) Anaphase | | | | Grou
(Short Answer Ty | | 3 x 5=15 | | | (SHOTE Allower Ty | pe Questions, | J X J-13 | | 3. If | eiosis occurs in which tissues of animals and plant
the average duplication time of E. Coli cells is 20 m
ells to become 32 cells? | | (3)
(3) | | 4. Pr
5. W | redict the basic component of a cell wall. That are the different types of membrane pumps? Iscuss the fate of COPII coated vesicles. | | (3)
(3)
(3) | | 5 x 6=30 | |----------| | 5 x 6=30 | | | | n in (5) | | (5) | | (5) | | (5) | | y (5) | | | | (5) | | (5) | | | | (5) | | |