

BRAINWARE UNIVERSITY

Term End Examination 2022 Programme – MCA-2022 **Course Name – Mathematical Foundation for Computer Science Course Code - MCA104** (Semester I)

Full Marks: 60 Time: 2:30 Hours [The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

15

	Grou	o-A	
1.	(Multiple Choice T Choose the correct alternative from the following	• •	1 x 15=1
(i)	Let p: It is cold and q: It is raining, then identify the symbolic form of the statement 'It is cold or it is not raining' is		
(ii)	a) $p \lor q$ c) $\neg p \land q$ Let p: It is cold and q: It is raining, then ident is not raining and it is not cold'	b) $\neg p \lor q$ d) $p \lor \neg q$ ify the symbolic form of the statement	: 'It
(iii)	a) $\neg q \land p$ c) $\neg (q \land p)$ If $f: A \rightarrow \eth$ μ where $B = \{0, 1, 4, 9\}$ and findentify for which set A is the one-to-one function.		$ abla^2$.
(iv)	a) $\{-1,0,1,2\}$ c) $\{-2,0,-1,2\}$ Identify the correct option: In a graph if $e=[u,v]$,	b) {-3,-1,0,2,3} d) {0,1,2,3} Then u and v are called	
(v)	a) Endpoints of ec) Adjacent nodesChoose the correct answer: A graph with no circuit	b) Neighborsd) All of theseand no parallel edges is called	
(vi)	a) Multi graphc) Simple graphIf a graph has 6 vertices and 15 edges then we	b) Pseudo graph d) None of these rite down the size of its adjacency mat	rix is
	a) 6X6 c) 15X6 Choose the correct option: Number of edges in	b) 6X15 d) 15X15	
	a) ⁿ C ₁ c) ⁿ C ₂	b) ⁿ C ₂ d) ⁿ C _n	

(VIII)	choose the correct option. The root of a binar	y tree is the vertex having degree			
	a) 1	b) 2			
	c) 3	d) 4			
(ix)	Write down the operation in which NFA is not closed				
	a) Negation	b) Kleene			
()	c) Concatenation	d) none of these			
(X)	Choose the correct statement				
	a) All NFAs are DFAs	b) All NFAs are not DFAs			
(vi)	c) both a and b	d) None of these			
(^1)	(xi) Select the right option: For a give Moore Machine, Given Input='101010', thus the output would be of length:				
	a) Input +1	b) Input			
	c)	d) Cannot be predicted			
	Input-1				
(xii)	The Grammar can be defined as: $G=(V, \sum, p, S)$ represents?). In the given definition, what does S			
	a)	b) Starting Variable			
	Accepting State				
	c) Sensitive Grammar	d) None of these			
(xiii)	Choose the right option: The set $(A \cup B \cup C)$	•			
	a) $B \cap C'$	b) $B \cup C$			
	c) $A \cap C$	d) $A \cap B' \cap C'$			
(xiv)	(xiv) Let $A = \{(x, y) : y = 2x + 5, x \in R\}$, $B = \{(x, y) : y = 4x + 9, x \in R\}$ then select the right				
	option	4 - P			
	a) $A \cap B = \varphi$	b) $A \cap B \neq \varphi$			
/va.A	c) $A \cup B = R$	d) $A \cup B = A$			
(xv) How many symmetric relations are possible on a set with n elements? Select the right option					
	a) 2 ⁿ	b) $2^{n(n-1)}$			
	c) $2^{n(n+1)/2}$	d) 2^{n+2}			
Group-B					
	(Short Answer Ty	•	3 x 5=15		
2. In (D60,) compute the join and meet of 6 and 10.			(3)		
3. Differentiate between one-to-one and many-to-one mapping.					
OR					
	Show that the number of ways in which 7 different beads can be arranged to form a necklace is 360.				

4. Explain infimum and supremum for a poset.

(3)

OR

Explain join and meet for a poset

(3)

5. Calculate the number of committees of 2 boys and 3 girls that can be formed out of 7 boys (3) and 6 girls.

OR

Illustrate that the sum of the degree of all vertices in a graph is twice the number of edges (3) in the graph

6. Relation R is defined on integers and R={a-b is divisible by 10 where a and b are integers}. Test whether R is an equivalence relation.

OR

Solve the minimum number of edges necessary in a simple planar graph with 15 regions. (3)

Group-C

(Long Answer Type Questions)

5 x 6=30

(5)

Evaluate DFA from the given NFA.

8. Examine if is an equivalence relation on \mathbb{Z} , where relation is defined on a set \mathbb{Z} by "a b (5) if and only if a-b is divisible by 5" for a,b \mathbb{Z} .

OR

(5)

Examine whether the following two graphs are isomorphic or not.

If R is a relation defined by

$$R = \{(x, y): x - y \text{ is divisible by 7}\}$$

Show that R is an equivalence relation.

OR

Explain the Konigsberg Bridge Problem and its solution.

(5)

(5)

10. Develop the following by using mathematical induction: $1(1!) + 2(2!) + 3(3!) + \cdots + n(n!) = (n+1)! - 1$

(5)

OR

Determine the truth value of the quantifier $\exists x, x^2 - 2x + 5 = 0$; set of all real numbers being the domain.

(5)

(5)

Without using truth table, Justify that ¬(P∨Q)∨(¬P∧Q)∨P is a tautology.

OR

Evaluate an NFA with $\Sigma = \{0, 1\}$ in which double '1' is followed by double '0'

(5)

12. Explain the truth value of the universal quantifier of the propositional function P(x, y) stating " $x^2 + y^2 < 12$ " and the domain is $\{1, 2, 3\}$.

(5)

OR

Compare between Mealy M/C and Moore M/C.

(5)
