

BRAINWARE UNIVERSITY

Term End Examination 2022 Programme – M.Sc.(MATH)-2019/M.Sc.(MATH)-2022 Course Name - Linear Algebra **Course Code - MSCMC101** (Semester I)

Full Marks: 60 Time: 2:30 Hours

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group-A

(Multiple Choice Type Question)

1 x 15=15

- Choose the correct alternative from the following:
- (i) If {α, β, γ} is a basis of a vector space V, then examine {α, β+γ, γ}.
 - a) It is a basis of V

- b) It is linearly dependent
- c) It is linearly independent but not a basis
- d) None of these
- (ii) Identify the non-linear transformation.

a)
$$T: \mathbb{R}^2 \to \mathbb{R}^2: T(x, y) = (3x - y, 2x)$$

a)
$$T: \mathbb{R}^2 \to \mathbb{R}^2: T(x, y) = (3x - y, 2x)$$
 b) $T: \mathbb{R}^3 \to \mathbb{R}^2: T(x, y, z) = (3x + 1, y - z)$

c)
$$T: \mathbb{R} \to \mathbb{R}^2: T(x) = (5x, 2x)$$

d)
$$T: \mathbb{R}^3 \to \mathbb{R}^2: T(x, y, z) = (x, 0, z)$$

(iii) Determine a 2x2 orthogonal matrix, whose first row is a multiple of (3, -4).

a)
$$\begin{bmatrix} \frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix}$$

b)
$$\begin{bmatrix} 3 & -4 \\ 4 & 3 \end{bmatrix}$$

c) Both
$$\begin{bmatrix} \frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix} & \begin{bmatrix} 3 & -4 \\ 4 & 3 \end{bmatrix}$$

Neither
$$\begin{bmatrix} \frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix} \text{ nor } \begin{bmatrix} 3 & -4 \\ 4 & 3 \end{bmatrix}$$

(iv) Evaluate the orthogonally diagonalizable matrix.

a)
$$\begin{bmatrix} 0 & 2 & 3 \\ 2 & 0 & 4 \\ -3 & 4 & 0 \end{bmatrix}$$

b)
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 4 \\ 3 & 4 & 3 \end{bmatrix}$$

c)

d)

\[1	2	3]
-2	4	4
-3	-4	3

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 4 \\ 0 & 0 & 3 \end{bmatrix}$$

(v) Write the sum of the eigen values of the matrix $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{pmatrix}$.

a) 5

b) -5

c) 7

d) -7

(vi) If A is an orthogonal Matrix then examine the matrix A.

a) Singular Matrix

b) Non-Singular Matrix

c) Symmetric Matrix

d) Skew-Symmetric matrix

(vii) Evaluate the dimension of the algebra A(V), where $V = M_{3,4}$.

a) 3

b) 4

c) 12

d) 144

(viii) Let $M_{n\times n}$ be the set of all n-square symmetric matrices and the characteristics polynomial of each $A\in M_{n\times n}$ is of the form

 $t^n+t^{n-2}+a_{n-3}t^{n-3}+\cdots+a_1t+a_0$. Then write the dimension of $M_{n\times n}$ over

Ris

a) $\frac{(n-1)\pi}{2}$

b) $\frac{(n-2)n}{2}$

c) $\frac{(n-1)(n+2)}{2}$

d) $(n-1)^2/2$

(ix) If 0 is an Eigen value of a matrix A, then identify the false statement.

a) 0 is an Eigen value of A^{-1}

b) 0 is an Eigen value of A^{T}

c) A has no inverse matrix

d) A can't be orthogonal

(x) Let A is an orthogonal matrix. Evaluate which of the following is not a possible eigen value of A?

a) -1

b) (

c) 1

d) $\sqrt{-1}$

(xi) If $V = \mathbb{R}^3$ be equipped with inner product $(x, y) = x_1y_1 + 2x_2y_2 + 3x_3y_3$, In this inner product space (V, (.,.)) identify the pairs of vectors that is orthonormal.

a) $u = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, v = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$

b) $u = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, v = \begin{vmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ 0 \end{vmatrix}$

c) $u = \begin{bmatrix} \frac{1}{\sqrt{3}} \\ 0 \\ 0 \end{bmatrix}, v = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$

 $u = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, v = \begin{bmatrix} 0 \\ \frac{1}{2} \\ 0 \end{bmatrix}$

(xii) Consider the inner product space of all polynomial of degree less than or equal to 3 and the inner product $f(x).g(x) = \int_{-1}^{1} f(x)g(x)dx$ then determine the value of xx^3 .

- a) 1/4
- b) 1/5

c) 2/5

d) 0

(xiii)

For the matrix $A = \begin{pmatrix} 1 & 1 & -1 \\ -2 & 3 & 0 \\ -2 & 1 & 2 \end{pmatrix}$, determine the eigen vector corresponding to

the eigen value 3.

- a) (0,1,1)
- c) (1,1,1)

- b) (1,2,1)
- d) None of these

the same eigenvalues.

diagonal matrix.

b) If two matrices are congruent, they have

d) Any symmetric matrix is congruent to a

(xiv) Select the true statement.

- a) Every quadratic form is a bilinear form.
- c) Symmetric bilinear forms have symmetric matrix representations.
- (xv) Examine the invertible matrix.
 - a) $\begin{pmatrix} 1 & 0 & 2 & 2 \\ 2 & 1 & 3 & 4 \\ 3 & 2 & 4 & 6 \\ 4 & 3 & 5 & 8 \end{pmatrix}$

b) $\begin{pmatrix} 2 & 3 \\ 4 & 6 \end{pmatrix}$

c) $\begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{pmatrix}$

d) $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

Group-B

(Short Answer Type Questions)

3 x 5=15

(3)

- 2. Compute the characteristic polynomial of $\begin{bmatrix} 1 & -i \\ i & 1 \end{bmatrix}$.
- Show that the characteristic polynomial of an operator T does not depend on the choice of a basis.

OR

Let T be a linear operator on a finite-dimensional vector space V. If V has
dimension 10, then show that T has at most 10 eigenvalues.

4. Compute the eigenvalues of $\begin{bmatrix} 0 & -i \\ i & 1 \end{bmatrix}$. (3)

OR

Compute the eigenvectors of $\begin{bmatrix} 1 & -i \\ -i & 1 \end{bmatrix}$.

(3)

5. Test whether A and A^t have the same eigenvectors.	(3)
OR Test whether every complex square matrix A similar to its transpose.	(3)
 Justify the statement, "For any n × n complex matrix A, the exponential e^A is invertible, and its inverse is e^{-A}." 	(3)
OR Justify the statement, "The eigenvalues and the trace of a Hermitian matrix A are real numbers."	(3)
Group-C (Long Answer Type Questions)	5 x 6=30
7. It is given that 3, 0, 0 are the Eigen values of the matrix $\begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$. Calculate the diagonalizing matrix.	(5)
8. State Cauchy-Schwarz inequality, Pythagoras theorem and Parallelogram law.	(5)
OR Define the rank of a matrix A. And also state the rank-nullity theorem.	(5)
9. Show that positive definite operator is also self-adjoint.	(5)
OR Let $V(R)$ be a vector space of all $2x$ 2 matrices over the real field R . Show that W is not a subspace of V where W consists of the set of matrices A for which $A^2 = A$.	(5)
10. Determine whether the set of vectors formed by the matrices A, B and C are dependent where $A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 3 & -1 \\ 2 & 2 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & -5 \\ -4 & 0 \end{bmatrix}$	(5)
OR	(5)

If A is a complex 5x5 matrix with characteristic polynomial $f(x) = (x-2)^3(x+7)^2$ and minimal polynomial is $p(x) = (x-2)^2(x+7)$, then determine the Jordan form for A.

11. Evaluate the eigen vectors of the matrix
$$\begin{bmatrix} 5 & 1 \\ 4 & 2 \end{bmatrix}$$
 (5)

OR

Evaluate the rank and signature of
$$xy + yz + zx$$
. (5)

12. Evaluate a basis and the dimension of the subspace W of R^3 , where $W = \{(x, y, z) \in R^3 \mid x + y + z = 0\}.$ (5)

OR
Test whether $W = \{(\alpha_1, \alpha_2, ..., \alpha_n) \in R^n : \alpha_2 = \alpha_1^2\}$ is a subspace of $R^n(R)$. (5)
