

BRAINWARE UNIVERSITY

Term End Examination 2022 Programme – M.Sc.(MATH)-2019/M.Sc.(MATH)-2022 Course Name - Real Analysis Course Code - MSCMC102 (Semester I)

Full Marks: 60 Time: 2:30 Hours

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group-A

(Multiple Choice Type Question)

1 x 15=15

- Choose the correct alternative from the following:
- (i) Assume that α ↑ on [a, b]. If f ∈ R(α) on [a, b], then select the correct statement.

a)
$$\left| \int_a^b f(x) d\alpha(x) \right| = \int_a^b |f(x)| d\alpha(x)$$
 b) $\left| \int_a^b f(x) d\alpha(x) \right| \le \int_a^b |f(x)| d\alpha(x)$

b)
$$\left| \int_{a}^{b} f(x) d\alpha(x) \right| \le \int_{a}^{b} |f(x)| d\alpha(x)$$

c)
$$\int_a^b |f(x)| d\alpha(x) \le \left| \int_a^b f(x) d\alpha(x) \right|$$
 d) None of the mentioned

- (ii) A function f is defined on $\left(-\frac{1}{3}, \frac{1}{3}\right)$ by $f(x) = 1 + 2.3x + 3.3^2x^2 + \cdots + 3.$ $n.3^{n-1}x^{n-1} + \cdots$ Then write about f.
 - a) f is continuous on $\left(-\frac{1}{3}, \frac{1}{3}\right)$

b) f is continuous on $\left(-\frac{1}{3}, \frac{1}{3}\right]$

c) f is continuous on $\left[-\frac{1}{2},\frac{1}{2}\right]$

d) None of the mentioned

- (iii) Compute the Cesaro's sum of the series 1-1+1-1+1-1+...
 - a) 0

b) 0.5

- c) 1 d) none of the mentioned (iv) Compute the Abel's sum of the series $1-1+1-1+1-1+\ldots$
 - a) 0

b) 0.5

c) 1 d) none of the mentioned. (v) Evaluate $\int_0^{0.25} f$, where $f(x)=1+2.3x+3.3^2x^2+\cdots+n.3^{n-1}x^{n-1}+\cdots$

a) 0

b) 1

c) 0.25

d) none of these

(vi) Indicate the range of validity of the series $\sum_{k=0}^{\infty} (2^k + 3^k)x^k$

a)
$$-\frac{1}{2} < x < \frac{1}{2}$$

b)
$$-\frac{1}{3} < x < \frac{1}{3}$$

c)
$$-\frac{1}{2} \le x < \frac{1}{2}$$

d)
$$-\frac{1}{3} < x \le \frac{1}{3}$$

(vii) If $A \in L(R^n, R^m)$, then select the correct statement.

a)
$$\infty \ge ||A|| > 0$$

b)
$$\infty > ||A|| > 0$$

c)
$$\infty > |A| \ge 0$$

d)
$$\infty > ||A|| > -\infty$$

(viii) Let Ω be the set of all invertible linear operators on \mathbb{R}^n . Then select the correct statement for Ω .

a)
$$\Omega$$
 closed in $L(\mathbb{R}^n)$

b) Ω open in $L(\mathbb{R}^n)$.

c) Ω dense in $L(\mathbb{R}^n)$.

d) None of the mentioned

(ix) Identify the open subset of **R**?

a) [0,1)

b) (-1, 3]

c) (0, 1)

d) [0,1]

(x) Recognize the correct statement. Every bounded infinite subset of has

a) at most one limit point in R

b) at least one limit point in R

c) exactly one limit point in R

d) None of the mentioned

(xi) Identify the correct statement for the derived set S' of any set S and $A,B \subset \mathbb{R}$.

a)
$$(A \cap B)' = A' \cap B'$$

b)
$$(A \cap B)' \subset A' \cap B'$$

c)
$$(A \cap B)' \supset A' \cap B'$$

d) None of the mentioned

(xii) Let A and B be subsets of \mathbf{R} such that A be closed and B be compact. Then classify $A \cap B$.

a) $A \cap B$ is compact

 b) A∩B is closed but not compact

c) $A \cap B$ is not closed

d) None of these

(xiii) Evaluate the norm of the operator A(x, y) = (x, 0).

a) 0

b) 0.5

c) 1

d) none of the mentioned

(xiv) Evaluate the norm of the operator $A(x, y) = \left(\frac{x}{2}, \frac{y}{2}\right)$

a) 0

b) 0.5

c) 1

d) None of the mentioned

(xv) Assume $\alpha \uparrow$ on [a, b]. If $f(x) \le g(x)$ on [a, b], then validate the following inequality.

a) $\int_a^b f d\alpha \le \int_a^b g d\alpha$

b) $\int_a^b f d\alpha < \int_a^b g d\alpha$

c) $\int_{a}^{b} f d\alpha \ge \int_{a}^{b} g d\alpha$

d) $\int_a^b f d\alpha > \int_a^b g d\alpha$

Group-B

(Short Answer Type Questions)

	Show that the set N of all positive integers is not bounded above.	(3)	
	OR Explain Archimedean Property in R.	(3)	
	3. Applying definition of compact set show that (0, 1) is not a compact subset of R.		
	OR	(3)	
	Sketch the prove that a closed and bounded interval is a closed set.	(3)	
	 Let G ⊂ R be an open set and F ⊂ R be a closed set. Explain why G − F is an open set while F − G is a closed set. 	(3)	
	OR Explain why that Riemann integral on [a, b] is a particular type of Riemann-Stieltjes integral on [a, b].	(3)	
	5. Test whether the set Z of all integers is not compact.	(3)	
	OR Let A and B be subsets of $\mathbf R$ of which A is closed and B is compact. Test whether $A \cap B$ is compact.	(3)	
	6. If the power series $a_0 + a_1x + a_2x^2 +$ diverges for $x = x_1$, then validate that the series diverges for all real x , $ x > x_1 $.	(3)	
	OR Let A be a $m \times n$ matrix and if $x \in R^n$, then validate that the derivative of A at $x \in R^n$ is A	(3)	
	Group-C (Long Answer Type Questions)	5 x 6=30	
7.	State Implicit function theorem and Inverse function theorem		(5)
	OR State Banach contraction principle and the rank theorem		(5)
8.			(5)

Show that the function f(x, y) where $f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2} x^2 + y^2 \neq 0 \text{ is not } \\ 0 & x = y = 0 \end{cases}$ differentiable at the origin.

OR

Discuss about the infinite intersection of open sets.

(5)

(5)

9. From the equation $2x^2 - yz + xz^2 = 4$ determine $\frac{\partial x}{\partial y}, \frac{\partial x}{\partial z}$ (5)

OR

Using the definition of a compact set, prove that a finite subset of JR is a compact set in **R**. (5)

10. Explain the rectifiable curves. (5)

OR

Calculate the radius of convergence of the power series

vergence of the power series $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n+1} (x+1)^n.$ (5)

^{11.} If $1 + x + x^2 + \dots = \frac{1}{x-1}$, |x| < 1 then deduce the power series expansion of $\log(1-x)$.

OR

Assume the power series expansion of $(1+x)^{-2}$ deduce the power series (5) expansion of $tan^{-1}x$.

12. Evaluate the limit points of the set $\{n: n \in \mathbb{N}\}$. (5)

OR

Test the convergence of the power series $\sum_{n=0}^{\infty} nx^{2n}$.
