

BRAINWARE UNIVERSITY

Term End Examination 2022 Programme – M.Tech.-RA-2022 Course Name – Electronics in Robotic Technology Course Code - PEC-MIRA102B (Semester I)

Full Marks : 60

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group-A

(Multiple Choice Type Question) 1 x 15=15 Choose the correct alternative from the following: (i) Select the two inputs of the NAND gate if the output is low a) 0 b) 1 c) 10 d) 11 (ii) Select the decimal equivalent of hex number 1A53 a) 6793 b) 6739 c) 6973 d) 6379 (iii) A FET is better chopper than a BJT because it has a) Low offset voltage b) High input voltage c) High input current d) High series ON resistance (iv) A FET consists of a a) Source b) Drain d) All of these c) Gate (v) In a JFET, drain current is maximum when VGS is a) Zero b) Negative c) Positive d) Equal to pinch-off voltage (vi) In the operation of an NPN transistor, the electrons cross which region? b) The region where there is high depletion a) emitter region c) the region where there is low depletion d) P type base region (vii) According to the property of minterm, calculate how many combination will have value equal to 1 for K input variables? a) 0 b) 1 d) 3 (viii) How many flip-flops are required to construct mod 30 counter a) 5 b) 6

(ix)	d) 8 For the operation of enhancement- only N-channel MOSFET, value of gate voltage has to see		
(x)	b) High positive b) High negative c) Low positive d) Zero Calculate how many two input AND gates and two input OR gates are required to realize Y EBD+CE+AB		
(xi)	a) 1, 1c) 3, 2Calculate minimum number of two input NAND g	b) 4, 2 d) 2, 3 rates required to realize XNOR gate	
(xii)	a) 3c) 5Let the input of a subtractor is A and B; then calc	b) 4 d) 6 ulate the output if A = B.	
	a) 0 c) A	b) 1 d) B	
(xiii)	Choose a logic circuit that accepts several data in time to get through to the output		
(xiv)	a) multiplexerc) transmitterEarly effect in a transistor is known as	b) demultiplexer d) receiver	
a) Zener breakdown c) Thermal breakdown d) Reduction in width of base (xv) How many AND, OR and EXOR gates are required to design a full adder?			rowing
	a) 1, 2, 2 c) 3, 1, 2	b) 2, 1, 2 d) 4, 0, 1	
	Grou (Short Answer Ty		3 x 5=15
 State and explain De-Morgans Law. Construct a full adder circuit using a 3 to 8 line decoder. Construct Ex-OR gate using NAND gates only Simplify the following expression using K-map method: F= m (7,9,10,11,12,13,14,15) Write a short note on the Master slave JK flip flop. OR Design a JK Flip Flop using a D Flip Flop 			(3) (3) (3) (3) (3)
	Grou	p-C	
	(Long Answer Ty	pe Questions)	5 x 6=30
8. E 9. E 10. [11. (Explain how RS flip-flop can be obtained by using NExplain the use of an OPAMP as summing amplifier Explain the construction of J-K flip flop using S-R flip Describe OP Amp as a differentiator Calculate the output voltage for the summing a $V_1=0.2V$, $V_2=2V$, $V_3=1V$ and $V_3=2V$,	r. p flop mplifier circuit using OPAMP. Given	(5) (5) (5) (5) (5) (5)

diagram.

12. The transfer characteristic of an n-channel JFET is given, with usual symbols, by $I_{DS} = I_{DSS}(1-V_{GS}/V_P)^2$. Evaluate an expression for g_m from the above parabolic equation of the transfer characteristic, show how g_m varies with V_{GS} and I_{DS} .

OR

Distinguish between Synchronous and Asynchronous counters. (5)