



## **BRAINWARE UNIVERSITY**

Term End Examination 2022
Programme – M.Tech.(CSE)-AIML-2022
Course Name – Mathematics -I
Course Code - BSC-MMM101
( Semester I )

|                                                                                           | ( comester : )                                                        |                                                 |
|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------|
| Full Marks: 60 [The figure in the margin indicates full marks. 0                          | Candidates are required to give their answers in their own words      | <b>Time : 2:30 Hour</b> as far as practicable.] |
|                                                                                           | Group-A                                                               |                                                 |
| Choose the correct alternative from the following :                                       | (Multiple Choice Type Question)                                       | 1 x 15=15                                       |
| (i) Solve the standard deviation of a Poisson distribution                                | with mean 4.                                                          |                                                 |
| a) 4                                                                                      | b) 3                                                                  |                                                 |
| <ul><li>c) 2</li><li>(ii) Solve the mean of a binomial distribution with n=16 ε</li></ul> | d) 16<br>and p=0.5                                                    |                                                 |
| a) 8                                                                                      | b) 4                                                                  |                                                 |
| (iii) Select the correct option: The at                                                   | rrival and departure of quests in a hote                              | el in queneing                                  |
| systems can be stated as                                                                  | irvar and departure of quests in a note                               | in queueing                                     |
| a) The pure birth process.                                                                | b) The pure death proces                                              | SS.                                             |
| c) The birth death process.                                                               | d) None of these.                                                     |                                                 |
| •                                                                                         | ertain situation the customer arrives from                            | om one gate and                                 |
| -                                                                                         | te. This situation of incoming and out                                | _                                               |
| stated as                                                                                 | ic. This situation of incoming and out                                | going can be                                    |
|                                                                                           | b) The pure birth proces                                              | e.                                              |
| a) The pure death process.                                                                |                                                                       | 5.                                              |
| c) The birth-death process.                                                               | d) None of these.                                                     | .ii                                             |
| z-score for a speed of 78 mph.                                                            | a normal distribution with a mean equal to 70 mph and standard dev    | nation equal to 8 inpil. Evaluate ti            |
| a) 1<br>c) 2                                                                              | b) -1<br>d) 0                                                         |                                                 |
|                                                                                           | re are N inventories in the system, one                               | by one all the                                  |
| -                                                                                         | replacing the inventories. This process                               | •                                               |
| <sup>a)</sup> The pure birth process.                                                     | b) The pure death proces                                              |                                                 |
| c) The birth death process.                                                               | d) None of these                                                      |                                                 |
| -                                                                                         | solving the problem individually is 1/2, 1/3 respectively, evaluate t | he probability that the problem is              |
| solved.                                                                                   | h) 2/2                                                                |                                                 |
| a) 1/3<br>c) 0                                                                            | b) 2/3<br>d) 1                                                        |                                                 |
| (viii) The probability of success in a Bernoulli trial is 0.3. C                          |                                                                       |                                                 |
| a) 0.09<br>c) 0.9                                                                         | b) 0.21<br>d) 0.021                                                   |                                                 |
| (ix) Identify the right option: The m                                                     | iddle value of an ordered array of nun                                | nbers is the                                    |
| a) Mode                                                                                   | <sup>b)</sup> Mean                                                    |                                                 |
| c) Median                                                                                 | d) Mid-point                                                          |                                                 |

Select the right option: The steady-state probability vector  $\pi$  of a discrete Markov chain with transition probability matrix P satisfies the matrix equation

\*\* 
$$P \pi = 0$$

\*\*  $P \pi = \pi$ 

\*\*  $P \pi = 0$ 

\*\*  $P \pi = \pi$ 

\*\*  $P \pi = 0$ 

\*\*  $P \pi = 0$ 

\*\*  $P \pi = 0$ 

\*\* Consider the situation, when no server is working, then calculate the number of customers in the system

\*\* a) Equal to number of customers in queue.

\*\* a) Leval than number of customers in queue.

\*\* a) Love than number of customers in queue.

\*\* a) More than number of customers in queue.

\*\* a) More of these.

\*\* a) More of these.

\*\* a) None of these.

\*\* a) None of these.

\*\* b) More than number of customers in queue.

\*\* a) None of these.

\*\* b) The methods for organizing, displaying, and describing data of None of these distribution

\*\* (A) None of these of two events A and B is

\*\* a)  $P(A \cap B) = P(A)P(B)$ 

\*\* a)  $P(A \cap B)$ 

2.

Given  $\Phi(2) = 0.9772$ ,  $\Phi(0.4) = 0.6554$ ,  $\Phi(2.4) = 0.9918$ 

Let X be a random variable with following probability distribution:

| X:      | -3 | 6             | 9 |
|---------|----|---------------|---|
| P(X=x): | 1  | 1             | 1 |
|         | 6  | $\frac{1}{2}$ | 3 |

Compute E[X] and  $E[X^2]$ .

5. In a reliability test there is a 42% probability that a computer chip survives more than 500 (3) temperature cycles. If a computer chip does not survive more than 500 temperature cycles, then there is a 73% probability that it was manufactured by company A. Evaluate the probability that a computer chip is not manufactured by company A and does not survive more than 500 temperature cycles?

OR

Show that,

$$f(x)=x$$
,  $0 \le x < 1$   
=  $k-x$ ,  $1 \le x \le 2$   
= 0 elsewhere

is a p.d.f of a random variable X then find the value of k. Evaluate the probability that the

random variable lies between  $\frac{1}{2}$  and  $\frac{3}{2}$ .

If X be a continuous random variable then justify that- $\lim_{x \to \infty} F(x) = 1$ 

OR

Justify that the mean and variance for a Poisson distribution with parameter 'm' will be equal (3) to each other's.

**Group-C** (Long Answer Type Questions)

5 x 6=30

(3)

(3)

(3)

(5)

(5)

- Describe the axiomatic definition of probability.
- 8. A random variable X has the following probability function values:

| X      | 0 | 1 | 2  | 3  | 4  | 5              | 6      | 7        |
|--------|---|---|----|----|----|----------------|--------|----------|
| P(X=x) | 0 | k | 2k | 2k | 3k | k <sup>2</sup> | $2k^2$ | $7k^2+k$ |

- (i) Evaluate the value(s) of k.
- (ii) Evaluate P(X<6).
- 9. Let A and B be two events. Suppose the probability that neither A or B occurs is 2/3. Estimate is the probability that one or both occur?

Let C and D be two events with P(C) = 0.25, P(D) = 0.45, and  $P(C \cap D) =$ (5) 0.1.

Estimate is the value of  $P(C^C \cap D)$ ?

<sup>10.</sup> The probability density function of a continuous distribution is given by

$$f(x) = \frac{3}{4}x(2-x), 0 < x < 2.$$
 Compute mean

You roll one red die and one green die. Define the random variables X and Y as follows:

X = The number showing on the red die

Y =The number of dice that show the number six

For example, if the red and green dice show the numbers 6 and 4, then X = 6 and Y = 1. Write down a table showing the joint probability mass function for X and Y, compute the marginal distribution for Y, and compute E(Y).

<sup>11.</sup> Evaluate the mean, variance and standard deviation of a Binomial distribution with parameter n <sup>(5)</sup> and p.

Evaluate the mean and variance for a normal distribution.

(5)

(5)

(5)

(5)

(5)

- <sup>12.</sup> If A and B are two independent events, then justify that

  - i)  $A^{c}$  and  $B^{c}$  are independent.
  - ii)  $A^{c}$  and B are also independent.

Let X and Y be two continuous random variables with joint pdf  $f(x, y) = cx^2y(1 + y)$  for  $0 \le x \le 3$  and  $0 \le y \le 3$ , and f(x, y) = 0 otherwise

- (a) Evaluate the value of c.
- (b) Evaluate the probability  $P(1 \le X \le 2, 0 \le Y \le 1)$ .