BRAINWARE UNIVERSITY LIBRARY Brainware University Barasat, Kolkata - 7034 22 Term End Examination 2022 Programme – B.Tech.(CSE)-2018/B.Tech.(CSE)-2019/B.Tech.(CSE)-2020 Course Name – Signals and Systems Course Code - ESC(CSE)501 (Semester V) | | Marks : 60
he figure in the margin indicates full marks. Cand
own words as far | Time: 2:30 didates are required to give their answers in teas practicable.] | Hours
their | | |------------|---|---|-----------------------|--| | | Grou
(Multiple Choice | - | 5=15 | | | 1. | Choose the correct alternative from the following: | | | | | (i) | What are the conditions called which are required for a signal to fulfil to be represented as Fourier series? | | | | | | a) Dirichlet's conditionsc) Fourier conditionsWhat are the properties of continuous time Fo | b) Gibbs phenomenon
d) Fourier phenomenon
urier series? | | | | (iii) | a) Linearity, time shifting c) Linearity, time shifting, frequency shifting, time reversal, time scaling, periodic convolution Find the Laplace transform of x(t) = u(t 2) u(t-2) | b) Linearity, time shifting, frequency shifting d) Linearity, time shifting, frequency shifting time reversal, time scaling, periodic convolution, multiplication, differentiation | ng, | | | (iv) | a) cos2s/sc) sinh2s/sWhen do Discrete Time Fourier Transform (DT | b) cosh2s/s
d) sin2s/s
FT) and Z-Transform (ZT) are equal? | | | | (v) | a) When $\sigma = 0$
c) When $\sigma = 1$
What is the nature of the following function: y | b) When r = 1
d) When r = 0
[n] = y[n-1] + x[n]? | | | | (vi) | a) Integrator c) Subtractor The sampling frequency of a signal is Fs = 200 interval. | b) Differentiator d) Accumulator 0 samples per second. Find its Nyquist | - | | | ·
(vii) | a) 0.5 secc) 5 secState space analysis is applicable even if the in | b) 5 msec
d) 0.5 msec
nitial conditions are | | | | | a) Zero
c) Equal | b) Non-zero
d) Not equal | | | b) Phase overlapping d) Spectral overlapping (viii) Which of the following is the process of 'aliasing'? a) Peaks overlapping c) Amplitude overlapping | (ix) | Sum of two periodic signals is a periodic signal when the ratio of their time periods is | | | | |--|---|--|-----------------------------|--| | (×) | a) A rational number c) A complex number What is the process gain of a signal with bandy of 100MHz? | b) An irrational number
d) An integer
vidth 20MHz and a sampling frequency | | | | · | a) 4dB c) 4.6dB Which of the following systems is linear? | b) 5dB
d) 125dB | | | | (xii) | a) y(t) = sin(x(t))
c) y(t) = cos(x(t))
For an definite energy signal power is | b) $y(t) = log(x(t))$
d) $y(t) = dx(t)/dt$ | | | | (xiii | a) P = 20
c) none of these
) A signal is said to be a periodic signal if | b) P = infinity
d) P = 0 | | | | (xiv | a) the signal changes with timec) the signal repeats in a fixed interval of time) If a signal f(t) has energy E, the energy of the si | b) the signal changes with frequencyd) the signal repeats over a fixed frequencygnal f(100t) is equal to | ency | | | | a) E
c) E/100
The convolution of a discrete time system with | b) 100E
d) 400E | | | | | a) the square of the system c) the derivative of the system | b) the system itself d) the integral of the system | | | | | Gro u
(Short Answer Ty | • | 3 x 5=1 | | | Explain the convolution property of the Fourier transform. Classify the different methods of evaluating inverse z-transform. Construct an anti-aliasing filter. Identify eigenvalue and eigenfunction of LTI-CT system. Develop the modulation property and convolution (time) property of the Fourier transform. | | | (3)
(3)
(3)
(3) | | | | O
alculate the Fourier transform of function x(t)=d | | (3) | | | | Grou
(Long Answer Ty | - | 5 x 6=3 | | | State and describe Parseval's relation for discrete-time aperiodic signals. Determine the Fourier Transform of the impulse response. Analyze the z-transform and ROC of the (a) causal sequence, X(n) = {1,0,3,-1,2} (b) anti causal sequence, X(n) = {-3,-2,-1,0,1} State and explain the following properties of z-transform. i) Time shifting ii) Time reversal iii) Differentiation iv) Scaling in z-domain Describe in detail the following signals. (i) Periodic and aperiodic (ii) Even and odd (iii) | | | (5)
(5)
(5)
al (5) | | | | complex exponential CT signal. (a) State Sampling theorem. (b) Decide how the | aliasing process is eliminated. | (5) | | | | (a) Write the properties of the state transition mexamples, the advantages of Sate Space represe | natrix. (b) Conclude with appropriate | (5) | | | | | • | | |