a) 0

c) -1

BRAINWARE UNIVERSITY

Term End Examination 2022 Programme – B.Tech.(ECE)-2019/B.Tech.(ECE)-2020 Course Name – Electromagnetic Waves Course Code - PCC-EC501 (Semester V)

LIBRARY
Brainware University
Barasat, Kolkats -700125

Full Marks: 60 [The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.] **Group-A** 1 x 15=15 (Multiple Choice Type Question) Choose the correct alternative from the following: (i) The divergence of which quantity will be zero? a) E b) D c) H d) B (ii) Which equations are regarded as wave equations in frequency domain for lossless media? a) Maxwell's b) Lorentz c) Helmholtz d) Poisson's (iii) The dominant mode in the TM waves is a) TM01 b) TM10 c) TM20 d) TM11 (iv) Faraday's law states which type of EMF? a) Transformer EMF b) Back EMF c) Generator EMF d) Secondary EMF (v) The Poynting vector is the power component that is calculated by the a) Product of E and H b) Ratio of E and H c) Dot product of E and H d) Cross product of E and H (vi) The transmission line is said to be lossless when the a) Conductor is perfect and dielectric is Conductor is perfect and dielectric is lossy lossless c) Conductor is imperfect and dielectric is d) Conductor is imperfect and dielectric is lossless (vii) In transverse magnetic waves, which of the following is true? a) E is parallel to H b) H is parallel to wave direction c) H is transverse to wave direction d) E is transverse to H (viii) The resistance of a lossless transmission line is

(ix) The condition that holds good in a distortionless transmission line is

b) 1

d) Infinity

		b) RL = GC d) RG = LC ween two rays is pi/2 and the angle of incidence is not equa- ic	al
	to pi/4, the emergent light a) Linearly Polarized c) Circularly Polarized (xi) When a transmission line h impedance, the line is said	b) Elliptically Polarized d) Non-Polarized as a load impedance same as that of the characteristic	
	a) Parallel c) Polarized (xii) The modes in a waveguide	b) Perpendicular d) Matched	
الرونين درونين	The state of the s	d) 40 agnetic wave with frequency 6MHz and a skin depth of 1.6	
Brainware University, Barasat, Kelkata -700125	a) 3.75 c) 9.6 (xiv) The cutoff frequency for th waveguide of dimension of	b) 0.26 d) 7.8 e dominant mode in TM mode propagation for a rectangular 30mm*40mm is:	r
Brainwa Barasat, I		b) 1 GHz d) 4 MHz gation in TE mode, if the rectangular waveguide has a 4 mm, then the cutoff wave number:	
	a) 100 c) 50	b) 500 d) 1000	
		Group-B (Short Answer Type Questions)	3 x 5=15
	2. Explain the physical significant3. Write the field configuration, or rectangular waveguide.	ce of divergence of D. cut off frequency and velocity of propagation for TM waves in	(3) n (3)
	 4. Prepare the wave equation for E and H in a conducting medium 5. Determine the intrinsic impedance or characteristic impedance. 6. A lossless transmission line in air has a characteristic impedance of 300 ohms and is terminated by unknown impedance. When the frequency is 200 MHz, the SWR is 4.48 a first voltage minima are situated at 6 cm from the load. Calculate the complex reflection efficient and terminating impedance of the line. 		(3) (3) (3) I
	Formulate the wave impedanc		(3)
	Group-C (Long Answer Type Questions)		5·x 6=30
	7. Examine that the intrinsic impedance for free space is 120Ĭ€. Derive the necessary equation.		(5)
	8. Categorize the various types of waveform distortions in transmission line and obtain the condition for distortion less lines.9. Evaluate the relationship between the short circuited impedance, open circuited impedance and characteristic impedance?		(5)
			(5)
	vector field is zero.	that â^+.â^+ x A=0: that is the divergence of the curl of any	(5)
	integral forms.	establish the Maxwell's equation in differential and	(5)

Maxwell's equation.

OR

Evaluate the expression for r-circles and x-circles in Smith chart.

(5)

LIBRARY
Brainware University
Rarasat, Kolkata -70012