

BRAINWARE UNIVERSITY

Library Brainware University 398, Ramkrishnapur Road, Barasat Kolkata, West Bengal-700125

Term End Examination 2022 Programme – BBA-2018/BBA-2019/BBA-2020

Course Name – Quantitative Techniques for Management/Quantitative Techniques in Management Course Code - BBA501/BBAC501

(Semester V)

٠.		ks: 60 e figure in the margin indicates full marks. Candidates are required .	Time: 2:30 Hours to give their answers in their own words as far as practicable.]				
		Group					
1.	Cho	(Multiple Choice Ty cose the correct alternative from the following :	rpe Question) 1 x 15=15				
-	00	ose the correct diteriodise from the johowing.					
	(i) I	Dual of the dual is described as					
		a) Primal	b) Dual				
(c) Any one may be Operation research approach is identied as	d) None				
		a) Multi-disciplinary	b) Artificial				
		c) Intuitive	d) All of these				
		Mathematical model of Linear Programming is important because	it helps to examine				
		a) the verbal description and numerical data into mathematical expression	b) formal models preferred by experts				
	<i>.</i>	c) relevant relationship among decision factors.	d) use of algebraic techniques				
	(iv)	The Hungarian method for solving an assignment problem can also					
		a) A transportation problem c) A I D = 2-1 transport	b) A travelling salesman problemd) Both a transportation problem & a travelling salesman				
		A LP problem	problem				
	(v)	In a transportation problem, we must make the number of	oqual beleat the right option.				
		a) destinations; sources c) positive cost coefficients; negative cost coefficients	b) units supplied; units demanded				
	(vi)	c) positive cost coefficients; negative cost coefficients d) warehouses; suppliers In a maximization assignment problem, the cost matrix is rewrote as					
		a) Opportunity loss matrix	b) Cost-Pay off matrix				
		c) Value maximization matrix	d) Both Opportunity loss matrix and Value maximization				
	(vii)	Which of the following statements about the northwest corner r	matrix ule is not applied?				
		a) One must exhaust the supply for each row before moving	b) One must exhaust the demand requirements of each				
		down to the next row	column before moving to the next column				
		 c) When moving to a new row or column, one must select the cell with the lowest cost. 	 d) One must check that all supply and demand constraints are met. 				
	(viii)	A feasible solution of a transportation problem is determined w	hen				
		all of the improvement indexes are positive	 b) the number of filled cells is one less than the number of rows plus the number of columns 				
	(ix)	 c) the solution yields the lowest possible cost The total cost of the optimal solution to a transportation proble 	d) all demand and supply constraints are satisfied				
	(1.2)	a) is calculated by multiplying the total supply (including any					
		dummy values) by the average cost of the cells	 b) cannot be calculated from the information given 				
		c) is found by multiplying the amounts in each cell by the cost	d)				
		for that cell for each row and then subtract the products of the amounts in each cell times the cost of each cell for the	can be calculated based only on the entries in the filled cells of the solution				
	, ,	columns	of the solution				
	(x)	2)					
		what one player wins, the other loses.	 the sum of each player's winnings if the game is played many times must be zero. 				
		c) the game is fair—each person has an equal chance of	d) long-run profits must be zero.				
	(xi	winning.) PERT stands for: select for the options	iong-run pronts must be zero.				
	,	a) Positive Error Reporting Time	h) Programme Evaluation Review Tasksians				
		c) Programme Evaluation and Research Theory	 b) Programme Evaluation Review Technique d) Process Evaluation and Research Technique 				
	(xi	i) A game can be formally defined as a kind of search problem w	ith the following components.Infer				
		a) Initial State c) Terminal Test	b) Successor Function				
	(xi	ii) Judge that Two person zero-sum game means that the	d) All of the mentioned				

b) Sum of losses to one player is not equal to the sum of gains

a) Sum of losses to one player is equal to the sum of gains to

	other			to other			
	to other and Su sum of gains to	ım of losses to one o other	is equal to the sum of player is not equal to	the None of	these	M •	
(xiv)	Select from the fo	ollwing: The maxim	in criteria is a(n)	criteria.			
	a) optimistic			b) neutral	fals shows	dopending on the	nroblem
(xv)	c) pessimistic	ver A is able to	fant fallen allen ale	d) can be a	ny one of the above	e depending on the	3.00.611
(,		B will both play stra	ve first, followed by pla	ayer B. Write the outc	will play strategy 1	while player B plays	strategy 2.
	c) Player A will p	play strategy 2 while	tegy 1. e player B plays strateg	b) Player A	yers will play strateg	gy 2	
•		O, and	projer o plays strates	., 2.			
•				Group-B			25.45
			(Short An	swer Type Questions)			3 x 5=15
2.	. 114						(3)
Г	etermine th	o fossil l	1			1.1	
	Vest Corner		olution of the f	ollowing trans	sportation pro	oblem using i	NOTID
		Wiethou.					
		W1	W2	·W3	W4	Supply	
	F1	1.4	0.5			7	
	. 11	14	25	45	5	6	
	F2	16	25	35	55		
			2,3	33	2		
	F3	35	3	65	15	16	
	Demand	4	7	6	13	J	
		-	,	O	13		
3.	Solve the fo	llowing LP pro	blem using grap	hical method			(3)
	Maximize Z		0.0				
	s.t. the cons	straints					
	a) X ₁ + 2X ₂ s	< 10			~		
	b) $X_1 + ZX_2 \le 10$				Brainward		
					398, Ramkrishn	<i>brary</i> e University apur Road, Barasat	
	c) X ₁ − X ₂ ≤	· 2			. Kolkata, West		
	d) $X_1 - 2X_2$	≤ 1					
	$X_1, X_2 \ge 0$						
	Rs. 30 per jar a	na z respectively. A	nits of chemicals X, Y, dry product contains 1 ells for Rs. 20 per carto ustrate the problem.	2 and 4 units of X. Y	and 7 per carton If t	he liquid product sell.	- C
	5. Explain the two	o-person zero sum ga	me, giving a suitable exam	mple.			(3)
	6. Express the diff	ference between tran	sportation and assignme				(3)
	Express the ty	pes of problems in d	ecision making under d	OR lifferent environment.			(3)
	ž.						
				Group-C			
			(Long A	Answer Type Questions)		5 x 6	=30
7.	State the difference	between feasible so	lution and basic feasible	solution.			(5)
8.	PERI takes care o	i uncertain durations	.' Justify the statement.				(5)

(5)

Identify the dual of the following problem:

Minimize Z = X1 + 2X2

Subject to constraints:

$$2X1 + 4X2 \le 160$$

$$X1 - X2 = 30$$

$$X1 \ge 10$$

$$X1, X2 \ge 0$$

- 10. In a game of matching coins, player A wins Rs 8, if both coins show heads and Rs. 1 if both are tails. Player B wins Rs. 3 when coins do not match. Given the choice of being player A or player B, determine the strategy of the players?
- 11. Estimate the dual of the following primal problem.

$$Minimize Z = X1 - 3X2 - 2X3$$

s.t.

a)
$$3X1 - X2 + 2X3 \le 7$$

b)
$$2X1 - 4X2 \ge 12$$

c)
$$-4X1 + 3X2 + 8X3 = 10$$

 $X1, X2 \ge \underline{0}$, X3 unrestricted in sign.

Library
Brainware University
398, Ramkrishnapur Road, Barasat
Kolkata, West Bengal-700125

12. Distinguish between maximin and minimax strategy.

OR

A small project involves 7 activities, and their time estimates are listed in the following table. Activities are identified by their beginning (i) and ending (j) node numbers.

Activities			
	Optimistic	Most Likely	Pessimistic
1-2	1	. 1	7
1 – 3	1	4	7
1 – 4	2	2	8
2-5	1	1	1
3 – 5	2 .	5	14
4 – 6	2	5	8
5-6	3	6	15

Evaluate the critical path.

(5)

(5)

(5)

(5)