

Brainware University
398, Ramkrishnapur Road, Barasat
Kolkata, West Bengal-700125

BRAINWARE UNIVERSITY

Term End Examination 2022 Programme – B.Tech.(CSE)-2018/B.Tech.(CSE)-2019 Course Name – Digital Communication Course Code - OEC-701B (Semester VII)

	Marks : 70	Time : 3:0 Hour
[T]	ne figure in the margin indicates full marks. Cand own words as far	idates are required to give their answers in their
	Group	
1.	Multiple Choice T Choose the correct alternative from the following	ype Question) 1 x 15=15 g :
(i)	The process in which the top of each pulse in the analog segment is analyze as	e output samples retains the shape of
	a) Natural sampling	b) Ideal sampling
	c) Aliasing State, Which process is more economical?	d) None of the mentioned
	a) Undersampling	b) Oversampling
(iii)	c) Aliasing The main sources of corruption observe are	d) None of the mentioned
	a) Sampling and quantizing effects	b) Channel effects
(iv)	 c) Sampling, quantizing and channel effects The signals which are obtained by encoding ea written as 	d) None of the mentioned ch quantized signal into a digital word is
	a) PAM signal	b) PCM signal
	c) FM signal	d) Sampling and quantization
(v)	In PCM encoding, quantization level varies as a	a function assciated with
	a) Frequency	b) Amplitude
/:\	c) Square of frequency	d) Square of amplitude
(VI)	The size of the quantile interval is nameed as	·
	a) Inter level	b) Step size
(vii	c) Quantile size	d) Level width
(411)	In non uniform quantization, the quantization	
	a) Inversely proportionalc) Equal	b) Directly proportional
(viii) State, which modulation scheme is also called	d) Double
(a) ASK	
	c) PSK	b) FSK d) GMSK
(ix	In TDM, at the receiver end, filter is loca	ated.

b) High pass

Page 1 of 2

a) Low pass

c) Band pass (x) Companding is choose to	d) Band stop 398, Ramkris	hnaniir Ros
a) Increase the information transmission rate	b) Use only one carrier frequency to h different signals	andle
c) To use different frequency bands for different signals(xi) Choose, which has greater bandwidth?	 d) To protect all small signals in PCM f quantizing noise 	rom
a) TDM c) TDM & FDM (xii) Select, which maintains better fidelity?	b) FDM d) None of the mentioned	
 a) Analog communication c) Analog & Digital communication (xiii) The SNR value can be increased byapplying 	b) Digital communicationd) None of the mentionedthe number of levels.	
a) Increasingc) Does not depend on(xiv) A cyclic code can be generated applying	b) Decreasingd) None of the mentioned	
a) Generator polynomialc) Generator polynomial & matrix(xv) Linear codes are manage for	b) Generator matrix d) None of the mentioned	
a) Forward error correctionc) Forward error detection	b) Backward error correctiond) Backward error detection	
Grou (Short Angwer Tu	· ·	25.45
(Short Answer Ty	pe Questions)	3 x 5=15
2. Compare and contrast uniform and non-uniform q	uantization.	(3)
3. Explain Sampling theorem.		. (3)
4. Write the advantage of delta modulation over puls5. Write a short note on delta modulation.	se modulation schemes?	(3) (3)
6. Write comparative study of DPCM, DM and ADM signals.		(3)
OR		(0)
Write the difference between block codes and con	volutional codes?	(3)
Group	o-C	· i
(Long Answer Typ	pe Questions)	5 x 8=40
7. Estimate the difference between TDM & FDM.		(5)
8. Explain aliasing.		(5)
9. Explain QPSK with waveforms.		(5)
10. Express QPSK.	•	. (5)
11. Explain delta demodulation technique.		(5)
12. Write a short note on PCM.13. Represent 100111010 using following digital data	format (1) Polar R7 (2) Ripolar NP7 (2)	(5) (5)
AMI NRZ	Tormac (1) I oral N2 (2) Dipolal NN2 (3)	(5)
14. Explain repetitive generator.		(5)
OR		· /E\
Explain the detection of PCM system		(5)