

BRAINWARE UNIVERSITY

Term End Examination 2023
Programme – M.Sc.(MATH)-2022
Course Name – Abstract Algebra
Course Code - MSCMC201
(Semester II)

Full Marks : 60

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group-A

1.	(Multiple Choice ⁻ Choose the correct alternative from the following		15	
(i)) Identify the number of elements of order 2 in a cyclic group of even order is			
(ii)	a) 1c) 4Evaluate the number of abelian groups upto is	b) 2 d) 6 omorphism of order 10 ⁵		
(iii)	a) 2c) 7Identify the correct option. If and are two subgr	b) 5 d) 49 oups of , then		
	 a) HK is a subgroup but H ∩ K may not be a subgroup c) Both HK and H ∩ K are 	 b) H ∩ K is a subgroup but HK may not be a subgroup d) neither HK nor H ∩ K are subgroups 		
(iv)	subgroups) If a cyclic group has only three subgroups which are {e}, a subgroup of order 7 and the group itself. Then, identify the order of the group is			
(v)	a) 7 c) 49 Identify the correct option. In $(\mathbb{Z}, +)$	b) 14 d) None of these the order of all inverse elements is		
(vi)	a) zero c) two Identify the correct option. Which of the follo	b) one d) infinite		

	a) Every group of prime order is cyclicc) Every group of order less than 6 is commutative	 b) A cyclic group is of prime order d) If be a cyclic group of prime order, then every non-identity elements of is a generator of the group. 				
(vii)	Write the correct option. Extension of Q					
<i>(.</i> ::::	 a) N c) Q) If is a group of even order, then select the correct option 	b) Z d) R ion from below for it has element of order two				
(viii (ix)	a) at least one c) exactly two	b) at least two d) at most two				
(x)	a) m is prime c) m is real	b) m is rational d) m is natural number				
(xi)	a) 3 c) 2 Let be a group of order 1225, then select the a) abelian but not cyclic group c) simple group	 b) 4 d) 5 e correct option for the group from below b) cyclic group d) None of these 				
	Write the correct option. Extension of \mathbb{Q} a) \mathbb{N} c) \mathbb{Q}) Write the cardinality of the centre of \mathbb{Z}_{12}	b) ℤ d) ℂ				
·	a) 1 c) 3) If $c = (1,2,3,4)$, then calculate c^2	b) 2 d) 12				
(xv)	 a) (1,3)(2,4) c) (2,4) If G is a group of even order, for all a ≠ e if a² for the group G 	b) $(1,3)$ d) $(2,3)(3,1)$ = e , then select the correct option				
	a) abelian groupc) normal group	b) subgroupd) None of these				
	Group-B (Short Answer Type Questions) 3 x 5=15					
	2. Describe permutation group. State Cayley's theorem. 3. Test that every proper subgroup of a group of order 6 is cyclic.					
	Define nilpotent element of a ring. Show that a ring containing no divisor of zero contains no non-zero nilpotent element.					

Examine that $\sqrt[3]{2}$ is algebraic of degree 3 over \mathbb{Q} . Let R be the ring of all real-valued continuous functions defined on the closed unit interval, i.e., on [0,1] and let $S = \{f \in R: f\left(\frac{1}{2}\right) = 0\}$. Justify whether S is an ideal of R or not. OR What is radical extension? Conclude when a polynomial is called solvable by radicals? **Group-C** (Long Answer Type Questions) 5 x 6=30 7. Justify that no group of order 40 is simple. (5) 8. Define group action and give an example. (5) (5) In the ring $(\mathbb{Z}_n, +, ...)$ show that an element \overline{m} is a unit if and only if the gcd(m, n) is 1. Evaluate $[\mathbb{Q}(\sqrt{3}, \sqrt{7}): \mathbb{Q}(\sqrt{3})]$ and $[\mathbb{Q}(\sqrt{3}): \mathbb{Q}]$. (5) (5) 11. Let K be a field of characteristic 0. Let F/K be finite normal extension. Let $g(x) \in K[x]$ and E be the splitting field of g(x) over F. Then deduce that E/K is normal extension. ^{12.} Justify that $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is a normal extension of \mathbb{Q} . (5)

(3)

(3)

(3)

(5)

Page 3 of 4

OR

Justify that the symmetric group S_3 has a trivial centre.
