

BRAINWARE UNIVERSITY

Term End Examination 2023
Programme – M.Sc.(MATH)-2022
Course Name – Complex Analysis
Course Code - MSCMC202
(Semester II)

Full Marks : 60 Time : 2:30 Hours

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group-A

(Multiple Choice Type Question)

1 x 15=15

- 1. Choose the correct alternative from the following:
- (i) The transformation $z \to \frac{1}{z}$ transfers a straight line into a
 - a) Straight line passing through the origin
 - c) Circle passing through origin
- b) Straight line not passing through the origin
- d) Circle not passing through origin
- (ii) By the transformation w=cz(c>0), the figure in the z -plane is stretched or contracted

according as c satisfies

a)
$$c < 1_{or c} > 1$$

b)
$$c > 1$$
 or $c < 1$

c)
$$c \leq 1$$
 or $c > 1$

d)
$$c \ge 1$$
 or $c < 1$

- (iii) |z-1|=|z+i| produces
 - a) The disc

b) The ellipse

c) The line

- d) The circle
- (iv) By the transformation $w = e^{i\frac{\pi}{4}}z$, the line x = 0 is transformed into the line:

	a) v=-u c) v+u=1	b) $v=u$ d) $v=0$
(v)	Under the transformation $w=z+1-i$, the image of the line $x=0$ in the z-plane expresses	
(vi)	a) u=1 c) v=1	b) $u=0$ d) $v=0$
(vi)	Calculate the value of $\int_{C} \frac{dz}{z+2}$, where $C z = 1$.	
	a) $\frac{\pi}{2}$	b) ₁
(vii)	c) 2mi	d) 0
(*,	Solve the radius of convergence of the series $\sum_{n=0}^{\infty} \frac{n!}{n^n} z^n$.	
	a) 1	b) 1/e
	c) e	d) 0
(viii)	Let $E = \{z \in C z > 1\} \cup \{i\}$. Then select the correct option.	
	a) E is open but not closed in C c) E is neither open nor closed in C	b) E is closed but not open in C d) E is both open and closed in C
(ix)	Locate the region where the function $f(z) = z $ is analytic.	
	a) Everywhere c) Only at z=0	b) Nowhere d) Everywhere except at z=0
(x)	Estimate the number of isolated singularities of the function $f(z)=\frac{1}{\sin\frac{\pi}{z}}$.	
	a) 1 c) 5	b) 2 d) Infinite
(xi)	z = 0 for the function $f(z) = log z$ is category	
	a) Isolated singularity	b) Pole
(xii)	c) Non-isolated singularity Evaluate the residue of z at $z=k\pi$, $k=0,\pm$	d) None of these - 1. + 2. + 3
	eraladic the residue of 2 de 2 milyin of <u>1</u>	
	a) -1 c) 1	b) 3 d) 2.5
(xiii)	Evaluate the residue of $\frac{1}{z^3 - z^5}$ at $z = 0$.	w, 2.3
	a) 1	b) 0

- d) 1.5 c) 2
- (xiv) Identify the region where the function sin z is analytic.
 - a) C ∪ {∞}

b) C except on the negative real axis

c) $C \setminus \{0\}$

- (xv) Express the analytic function w = u + iv where $u = e^{-x} \{(x^2 y^2)\cos y + 2xy\sin y\}$.
 - a) $e^{-x}\{(x-iy)^2(\cos y i\sin y)\}$ b) $e^{-x}\{(x-iy)^2(\cos y + i\sin y)\}$

 - c) $e^{-x}\{(x+iy)^2(\cos y i\sin y)\}$ d) $e^{-x}\{(x-iy)^2(\cos y + i\sin y)\}$

Group-B

(Short Answer Type Questions)

3 x 5=15

(3)

2. Define index of curve or winding number.

(X,d) is a metric space.

- 3. Let X=C, set of complex numbers, and define d(x+iy,a+ib)=|x-a|+|y-b|. Then show that (3)
- 4. Examine that f(z)=xy+iy is nowhere analytic. (3)
- Evaluate $\oint e^{-2z} dz$ from $1 \pi i$ to $2 + 3\pi i$. (3)
- 6. Evaluate all the singularities of the function $f(z) = \frac{z-2}{z^2} \sin \frac{1}{z-1}$ (3)

OR

Evaluate the value of k so that the function $klog(x^2 + y^2)$ is harmonic.

(3)

Group-C

(Long Answer Type Questions)

5 x 6=30

7. State Fundamental Theorem of Algebra and prove it.

(5)

8. Express $\frac{z+3}{(z-1)(z-4)}$ in Taylor series about z=2.

(5)

- Let f be continuous on a domain D. If ∫_c f(z)dz = 0 for every closed contour C in D, then illustrate that f is analytic throughout D.
- 10. If f(z) is analytic and f'(z) continuous at all points inside and on simple closed curve C, then illustrate that $\oint f(z) dz = 0$ (5)
- 11. Justify-An open set G⊂C is connected iff for any two points a, b in G there is a polygon from a to b lying entirely inside G (5)
- 12. Justify that the transformation $w(z + i)^2 = 1$ maps the inside of the circle |z| = 1 in z-plane on the exterior of a parabola. (5)

OR

(5)

Suppose that a function f is analytic inside and on a positively oriented circle C_R , centered at z_0 and with radius R. If M_R denotes the maximum value of |f(z)| on C_R , then justify that $\left|f^{(n)}(z_0)\right| \leq \frac{n!M_R}{R^n}$ (n = 1, 2, ...).
