

BRAINWARE UNIVERSITY

Term End Examination 2023 Programme – M.Sc.(MATH)-2022 Course Name – Partial Differential Equations Course Code - MSCMC203 (Semester II)

Full Marks: 60 Time: 2:30 Hours

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group-A

(Multiple Choice Type Question)

1 x 15=15

- 1. Choose the correct alternative from the following:
 - (i) Identify the canonical form of the differential equation $\frac{\partial^2 u}{\partial x^2} x^2 \frac{\partial^2 u}{\partial y^2} = 0$

a)
$$\xi = y^2 + \frac{1}{2}x$$
, $\eta = y^2 - \frac{1}{2}x$

b)
$$\xi = y + \frac{1}{2}x^2$$
, $\eta = y - \frac{1}{2}x^2$

c)
$$\xi = y + x^2, \eta = y - x^2$$

d)
$$\xi = y^2 + x, \eta = y^2 - x$$

- (ii) Choose the correct option. The Laplace equation is
 - a) Homogeneous function

- b) Non-homogeneous function
- d) None of these.
- c) Harmonic function d) Non (iii) Choose the correct Lagrange's subsidiary equations for $y^2zp+zx^2q=xy^2$

a)
$$\frac{dx}{y^2z} = \frac{dy}{zx^2} = \frac{dz}{y^2}$$

b)
$$\frac{dx}{x^2} = \frac{dy}{y^2} = \frac{dz}{zx}$$

c)
$$\frac{dx}{1/x^2} = \frac{dy}{1/y^2} = \frac{dz}{1/zx}$$

None of these

- (iv) Determine the boundary condition which includes direct boundary value
 - a) Dirichlet Boundary Condition
 - c) Forced boundary condition
- (v) Predict the general form of 2-dimensional Wave equation

a)
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = k^2 \frac{\partial^2 u}{\partial t^2}$$

c)
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{1}{k} \frac{\partial^2 u}{\partial t^2}$$

b)
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{1}{k^2} \frac{\partial^2 u}{\partial t^2}$$

b) Newmann Boundary Condition

d) Discrete boundary condition

d)
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial t^2}$$

(vi) Identify the value of k in the heat equation $\frac{\partial u}{\partial x} = k \frac{\partial^2 u}{\partial x^2}$

a)
$$k = \frac{K}{\rho \sigma}$$

b)
$$k = \frac{K\rho}{\sigma}$$

c)
$$k = K \rho \sigma$$

- d) None of these
- (vii) Select the correct option. Out of the following four PDEs which equation is linear?

a)
$$\frac{\partial^3 z}{\partial x^3} - 3 \frac{\partial^2 z}{\partial x^2} \frac{\partial z}{\partial y} + 8 \frac{\partial^2 z}{\partial y^2} = \sin x$$

b)
$$\frac{\partial^3 z}{\partial x^3} - 3 \frac{\partial^2 z}{\partial x^2} \frac{\partial z}{\partial y} + 8 \frac{\partial z}{\partial x} \frac{\partial^2 z}{\partial y^2} = \sin x$$

c)
$$\frac{\partial^2 z}{\partial x^2} + 5 \frac{\partial^2 z}{\partial y^2} = 0$$

(viii) $\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial x \partial t} + 4 \frac{\partial^2 u}{\partial x^2} = 0$ Classify the equation

a) Elliptic

b) Hyperbolic

	(ix)	Select the correct option. The equation of the envelope of surface called	e represented by complete integral of the given PDE is	3	
	(x)	a) Singular solutionc) General integralChoose the correct option. When solving a Laplace equation usin	b) Particular Integral d) None of these g variable separable method, we get the solution if		
	(~)	a) k is positive c) k is 0	b) k is negative d) k can be anything		
	(xi) The partial differential equation $z_{xx} - x^2 z_{,yy} = 0$, $y > 0$, $x > 0$ can be classified as				
		a) Elliptic	b) Parabolic		
		^{c)} Hyperbolic	d) Parabolic in $y \ge x$ and hyperbolic in $y < x$		
	(xii)	Choose the correct option. The auxiliary equations of $p+q+1=0$	0 are		
		a) $dx = dy = dz$	b) $dx = dy = -dz$		
		$\frac{dx}{p} = \frac{dy}{q} = dz$	$\frac{dy}{dz} = \frac{dy}{a} = -dz$		
			p - q		
	(xiii)	Select the PDE that refers to the governing equations of CFD			
		a) Linear c) Non-linear	b) Quasi-linear d) Non-homogeneous		
	(xiv)	(xiv) Select the region in which the following differential equation is hyperbolic.			
		$yu_{xx} + 2xyu_{xy} + xu_{yy} = u_x + u_y$			
		a) $xy \neq 1$	b) $xy \neq 0$		
		c) $xy > 1$	d) $xy > 0$		
	(xv)	(xv) In two-dimension heat flow, categorize the temperature along the normal to the xy-plane			
		a) zero c) finite	b) infinity d) 100K		
		Grou			
		(Short Answer Ty	pe Questions)	3 x 5=15	
2. Describe the characteristics of $x^2r + 2xys + y^2t = 0$.					(3)
3. A ₁	pply the m	ply the method of separating variables to solve the following problem			
$\frac{\partial u}{\partial t}$	$\frac{u}{t} = c^2 \frac{\partial^2 u}{\partial x^2}$	$t \ \mathbb{R} \ 0.0 \le x \le 1$			
	(0,t)=2,u(
u((x,0) = x(1-x)	-x)			
4. D	iscuss the	e solution of the heat equation problem described by			(3)
	21	$(x,t) = ky \cdot (x,t) + f(x,t) - \infty < x < \infty \qquad t > 0$			

 $u_t(x,t) = ku_{xx}(x,t) + f(x,t), \quad -\infty < x < \infty, \qquad t > 0$

u(x, 0) = 0, $-\infty < x < \infty$ using Duhamel's principle.

⁵ Calculate the deflection u(x, y, t) of the square membrane of each side unity and c=1, if the initial velocity is zero and the initial deflection is $f(x,y) = A\sin\pi x\sin 2\pi y.$

^{6.} Evaluate the complete integral of p(1 + q) = qz.

(3)

Estimate the solution of the PDE $(x^2 - yz)p + (y^2 - zx)q = z^2 - xy$

(3)

Group-C

(Long Answer Type Questions)

5 x 6=30

(5)

(5)

7. State and prove the uniqueness theorem of the solution for the wave equation.

(5)

8. Discuss the solution of the heat equation problem

$$u_t(x,t) = ku_{xx}(x,t) + f(x,t), \quad -\infty < x < \infty, \quad t > 0$$

9. Deduce the two-dimensional Laplace equation in Cartesian coordinates using the method separation of variables.

(5)

Deduce the solution of the initial value problem described by PDE: $u_{tt} - c^2 u_{xx} = e^x$ with the given condition u(x, 0) = 5, $u_t(x, 0) = x^2$ using any suitable solution

- 11. Choose the separation of variables method and solve the following Helmholtz equation, using $\nabla^2 u + k^2 u = u_{xx} + v_{xx} + v_{xx}$ (5) $u_{yy} + u_{zz} + k^2 u = 0.$
- 12. Conclude that the Dirichlet problem for a rectangle is defined as

(5)

PDE: $\nabla^2 u = 0$, $0 \le x \le a$, $0 \le y \le b$

Boundary conditions: u(x, b) = u(a, y) = 0, u(0, y) =

0, u(x, 0) = f(x) is of the form u(x, y) =

$$\sum_{n=1}^{\infty} A_n \sin \frac{n\pi x}{a} \sinh \left\{ \frac{n\pi(y-b)}{a} \right\} , \text{ where}$$

$$A_n = \frac{2}{a} \frac{1}{\sinh \left(-\frac{n\pi b}{a}\right)} \int_0^a f(x) \sin \left(\frac{n\pi x}{a}\right) dx .$$

Decide the solution of the one-dimensional wave equation $u_{tt} = c^2 u_{xx}$, $0 \le x \le \pi$, t > 0 subject to i) u =(5) $0 \text{ when } x = 0 \text{ and } x = \pi$

ii) $u_t = 0$ when t = 0 and u(x, 0) = x, $0 < x < \pi$.
