

BRAINWARE UNIVERSITY

Term End Examination 2023 Programme – M.Sc.(MATH)-2022 Course Name – General Topology Course Code - MSCMC205 (Semester II)

Full Marks: 60 Time: 2:30 Hours

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group-A

(Multiple Choice Type Question)

1 x 15=15

- Choose the correct alternative from the following:
- (i) Identify the correct option: If X is first countable and Hausdorff if every convergent sequence has
 - a) no limit

b) unique limit

Kolmogorov

c) finite number of limits

d) infinite number of limits

b) not Completely normal but

- (ii) Select which of the following property is hereditary
 - a) Completely normal but not Kolmogorov
- c) both Completely normal and Kolmogorov
- d) neither Completely normal nor Kolmogorov
- (iii) Select the correct option: A space is T₅ if
 - a) T₁ but not completely normal
 - c) both T₁ and completely normal
- b) completely normal but not T₁
- d) neither completely normal nor T₁
- (iv) Write the correct option, $\left\{1, \frac{1}{2}, \frac{1}{3}, \dots\right\} = ?$
 - a) [0,1]

b) $\left\{0,1,\frac{1}{2},\frac{1}{3},...\right\}$

c) {0}

- d) *\phi*
- (v) Choose the correct option: The identity function from a topological space (X, S) to (Y, T) is continuous if
 - a) T is finer than S

b) S is finer than T

<i>(</i> ·)	c) T is not comparable to S	d) T=S		
(VI)	Write the interior set of the set Q of all rational			
	a) Q	b) R d) <i>∮</i>		
(vii)	c) R\Q Let p is an accumulation point of A. If G is an o correct one.	,		
	a) $G \cap A = \phi$	b) $G \cap A \neq \emptyset$		
	c) $G \cap (A \setminus \{p\}) = \phi$	d) $G \cap (A \setminus \{p\}) \neq \emptyset$		
(viii) In a topological space (X , τ), the members of τ are called				
	a) Open sets	b) Closed sets		
	c) Topology members	d) None of these		
(ix)	Let $X=\{a,b,c\}$. If $T_1=\{X,\phi,\{a\}\}$, $T_2=\{X,\phi\}$ cite which of the following is true	$\{a,b\}$ are two topologies on X then		
	a) T_1 is finer than T_2	b) T_2 is finer than T_1		
	c) T_1 and T_2 are not comparable	d) $T_1 = T_2$		
(x)	Select by which interval the lower limit topology is generated			
	a) (a, b)	b) [a, b)		
	c) (a, b]	d) [a, b]		
(XI)	Select the correct option: A set with same algorithm and set with same algorithm.	ebraic structure is called		
	a) Set	b) Space		
	c) Properset	d) Topology		
(xii)	Predict the correct option: Uryshon's lemma ap			
	a) compact space	b) connected space		
(xiii)	c) normal space d) regular space (xiii) Identify the correct option: If X is a Hausdorff metric space then the number of			
elements of the space is -				
	a) finite	b) countably infinite		
,	c) uncountable	d) none of these		
(xiv) Predict the correct option: Uryshon's lemma applicable on the				
	^{a)} T₃	b) T ₁		
	c) _{T4}	d)		
	14	^{u)} T _{3/2}		
(xv)	Write the correct option: Homeomorphism is-			
	a) Open map	b) Closed map		
	c) Structure preserving map	d) None of these		
Group-B (Short Answer Type Questions) 3:				
(Short Answer Type Questions)				
2. Show that R $\{0\}$ is homeomorphic to $xy = 1$.				

Page 2 of 4

(3)

3. Establish that the only non-empty subset of R which is open as well as closed is R.

4.	4. Examine that compactness is a topological property.			
5.	Explain dense space	(3)		
	Justify the statement: "Let f: X-Y. Then f is continuous if and only if f is sequentially continuous".	(3)		
	Justify the statement: "Let X be a compact Hausdorff space and let A be a closed subset of (3) X. Let \sim be the equivalence relation defined on X as follows: If $x_1, x_2 \in A$ then $x_1 \sim x_2$. If $x_1, x_2 \in X$ A then $x_1 \sim x_2$ iff $x_1 = x_2$. Consider the topological space $Y := (X A) \cup \{\infty\}$ with topology Ω_Y as discussed above. Then Y is homeomorphic to X/\sim ."			
Group-C				
	(Long Answer Type Questions)	5 x 6=30		
7.		(5)		
	Identify a topology on $X = \{a,b,c\}$ with proper figure.			
8.	Show that if X is a Hausdorff space, then a sequence of points of X converges to at most one point of X .	(5)		
9.	Justify that the product of two Hausdorff spaces is Hausdorff.	(5)		
10	. Construct the proof that a circle and an ellipse are homeomorphic.	(5)		
11	. Deduce that every compact topological space is countably compact.	(5)		
12	. Justify that if X be a metric space with metric d. Define d': $X \times X> R$ by the equation $d'(x, y) = \min\{d(x, y), 1\}$. Then d' is a metric that induces the same topology as d.	(5)		
	OR Justify that The uniform topology on R^J is finer than the product topology and coarser than the box topology; these three topologies are all different if J is infinite	(5)		
