

BRAINWARE UNIVERSITY

Term End Examination 2023 Programme – M.Tech.-RA-2022 Course Name – Image Processing and Robotic Vision Course Code - PCC-MIRA202 (Semester II)

Full Marks: 60

Time: 2:30 Hours

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own

Group-A

words as far as practicable.]

(Multiple Choice Type Question)

1 x 15=15

- 1. Choose the correct alternative from the following:
- (i) Identify the property of a lens that determines how much light it can gather.
 - a) Aperture

b) Focal Length

c) Shutter Speed

- d) Neither of Aperture, Focal Length, Shutter Speed
- (ii) Define the distance between the nearest and farthest objects in an image that appear acceptably sharp.
 - a) Depth of Focus

b) Field of Depth

c) Depth of Field

- d) Neither of Depth of Focus, Field of Depth, Depth of Field
- (iii) Use a clustering algorithm for image segmentation by doing what?
 - a) Graph-Cut

b) Mean-Shift

c) MRFs

- d) All options are wrong
- (iv) State a drawback of the Hough Transform that is NOT true.
 - a) Computationally intensive

b) Affected by noise and outliers

c) Only detects straight lines

- d) Cannot detect curves
- (v) Test the term for determining the 3D location of a point in space by finding its projection onto two or more images.
 - a) Triangulation

b) Rectification

c) Stereo matching

- d) Disparity mapping
- (vi) Survey which technique is based on finding the minimum cut in a graph that models the image.
 - a) Graph-Cut

b) Mean-Shift

c) MRFs

d) No option is correct

(vii)	Subdivide which technique is a non-parametric algorithm that iteratively shifts a window to the mean of the points in the window.			
	a) Graph-Cut	b) Mean-Shift		
	c) MRFs	d) Nothing correct fom Graph-Cut, Mean- MRFs	Shift,	
(viii)	(viii) Evaluate the truth about PCA.			
(ix)	a) It is used for clusteringc) It is a supervised learning algorithmCompare a linear multiscale image processing tec	b) It is used for dimensionality reduction d) It is only used for classification hnique as an example.		
(x)	a) Laplacian pyramidc) Non-local meansClassify, which type of projection is commonly use	b) Wavelet transform d) K-means clustering ed in technical and engineering drawings		
(xi)	a) Orthographic projectionc) Perspective projectionShow the type of filter used to sharpen an image.	b) Parallel projectiond) Oblique projection		
(xii)	a) High-pass filterc) Band-pass filterGive examples of a step in the HOG algorithm.	b) Low-pass filter d) Notch filter		
	a) Compute the gradient magnitude and orientation	b) Perform Gaussian smoothing		
(xiii)	c) Perform edge detection d) Compute the Laplacian of the image Locate the ROS package that contains the ROS camera driver base class.			
(xiv)	a) camera_info_manager b) image_transport c) camera_calibration d) usb_cam v) Define the camera model that assumes light travels in straight lines and forms an image on a plane.			
(xv)	 a) Pinhole Camera Model c) Pinhole Camera and Thin Lens Camera Model Solve a partial differential equation to estimate the which type of algorithm for shape from shading? 	b) Thin Lens Camera Model d) Neither Pinhole Camera Nor Thin Lens Camera Model e surface normals of an object as part of		
	a) Propagation method	b) Optimization method		
	c) Frankot Chellappa algorithm	d) Nothing from Propagation method, Optimization method, Frankot Chellapp algorithm	a	
	Grou	о-В		
	(Short Answer Ty		x 5=15	
 Differentiate and explain how pinhole and thin lens model for cameras affect resulting image. Define homogeneous coordinates and explain their usage in image processing and computer vision. 				
 4. Estimate depth from stereo images using binocular stereopsis techniques. 5. Describe principal component analysis (PCA) and its use for dimensionality reduction in image (3) 				
processing. 6. Describe how face detection works and speculate on the algorithms used for this task. OR			(3)	
	fferentiate between pedestrian detection and face proached differently.		(3)	

Group-C

(Long Answer Type Questions)	5 x 6=30		
7. Perform basic image processing tasks using OpenCV, including filtering, thresholding, edge detection.	and (5)		
8. Define eigenfaces and describe how they are used in face recognition.	(5)		
9. Compare and contrast low-pass and high-pass filters, and explain their use in image processing.	(5)		
10. Define landmarks in computer vision and explain how they are used for object recognand tracking.	nition (5)		
11. Explain the use of the Laplacian of Gaussian (LOG) filter for feature extraction in composition.	outer (5)		
12. Address the common challenges in developing computer vision systems for autonomous vehicles and propose solutions to overcome them.			
OR			
Use machine learning algorithms such as neural networks and support vector machin improve the performance of computer vision systems and explain how they work.	es to (5)		

Page 3 of 3