molecular biology databases, including GenBank, PubMed, and BLAST ## **BRAINWARE UNIVERSITY** **Term End Examination 2023** Programme – M.Tech.(CSE)-AIML-2022 **Course Name – Bio-Informatics** Course Code - PEC-MCSM201A (Semester II) Full Marks: 60 Time: 2:30 Hours [The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.] ## **Group-A** 1 x 15=15 | | (iviuitipie Choice i | ype Question) | I X I5= | |-------|---|--|---------| | 1. | Choose the correct alternative from the following | ; | | | (i) | List the main types of data used in bioinformatics | | | | (ii) | a) Numeric and text datac) Biological and chemical dataSelect the correct option. The laboratory work us models generally offline is referred to as | b) Image and audio data d) Sequence and structural data ing computers and computer-generated | | | (iii) | a) In silico c) Dry lab Identify the correct option. The laboratory work to web-based analysis generally online is referred to | • | | | (iv) | a) In silicoc) Dry labIdentify what KEGG stands for. | b) Wet lab
d) All of the above | | | (v) | a) Korean Encyclopedia of Genetic Gapsc) Kongo Encyclopedia of Genetic GroupsSelect the year in which the SWISSPROT protein s | b) Kazakh Encyclopedia of Genomic Ged) Kyoto Encyclopedia of Genes and Geequence database began. | | | (vi) | a) 1988c) 1986Identify why the NCBI database is important for n | b) 1987
d) 1985
nolecular biology research. | | | . , | a) It offers a platform for sharing and collaborating on molecular biology data c) It allows for the prediction of protein | b) It contains information on gene exprand regulation in various organismsd) It provides access to a wide range of | | structure based on amino acid sequence data | (vii) | Select how you can search for DNA sequences in | he GenBank database. | | | | |---|--|--|---------------------|--|--| | (viii) | a) By browsing through the database using filters based on organism or gene function c) By uploading a FASTA sequence file for the DNA of interest Choose which of the following is a DNA sequence | b) By entering a keyword or accession r
in the search bard) By accessing the DNA sequence align
tool within the database | | | | | (ix) | a) AUGUUCGCAUAA
c) ACUGUUGCGUAA
Calculate the percentage identity of two aligned s
two aligned sequences with a total length of 120
what is the percentage identity? | | ı | | | | (₁ , ₁) | a) 0.3
c) 0.25 | b) 0.75
d) 0.9 | | | | | (x) | Choose the correct mRNA sequence that would be transcribed from the following DNA sequence: TACGCTAGCG | | | | | | (xi) | a) AUGCGAUAGCc) UACGCUAGCGSelect the type of homology that can be classified | b) AUGCGUAUGCd) None of the aboveas orthologous. | | | | | (xii) | a) Homology between a gene and a non-coding DNA sequence c) Homology between two genes in different species Determine the amino acid sequence encoded by the second sequence encoded by the second sequence encoded by the second sequence encoded encoded sequence encoded sequence encoded sequence encoded sequ | b) Homology between two genes in the species d) Homology between a protein and a nucleotide sequence the following RNA sequence: | e same | | | | (xiii) | AUGCCAUGUUGA a) Met-Pro-Cys c) Arg-Cys-Asn Differentiate between the following types of mutamutation | b) Met-His-Leu
d) None of the above
ations: point mutation and frame-shift | | | | | | a) Point mutation involves insertion or deletion of nucleotides while frame-shift mutation involves substitution of nucleotides | b) Point mutation involves substitution single nucleotide while frame-shift minvolves insertion or deletion of nucl | nutation
eotides | | | | | Point mutation and frame-shift mutation are
the same thing | d) Point mutation involves substitution
nucleotides while frame-shift mutati
involves inversion of nucleotides | | | | | (xiv) | (xiv) Estimate the percentage of GC content in the following DNA sequence. Sequence: AGGTTACGCTACGTAGGACTGCGT | | | | | | | a) 0.5 | b) 0.6 | | | | | (xv) | c) 0.53Estimate the GC content of a DNA sequence with(C) nucleotides and 60 guanine (G) nucleotides. | d) 0.46
200 base pairs if it contains 70 cytosine | | | | | | a) 0.35 | b) 0.6 | | | | | | c) 0.65 | d) 0.7 | | | | | Group-B (Short Answer Type Questions) | | | | | | | Define Bioinformatics. Explain a BLAST search. Explain briefly the various types of protein structures. | | | | | | | 5. Distinguish between DNA replication and DNA transcription.6. Explain the betweenness property in a PPI network. OR | | | | | | |---|----------|--|--|--|--| | Explain how a peptide bond formed between two amino acids. | (3) | | | | | | Group-C | | | | | | | (Long Answer Type Questions) | 5 x 6=30 | | | | | | 7. Construct a maximum likelihood tree based on amino acid sequences of a specific protein family. Explain the methods used for tree construction and the interpretation of the results | (5) | | | | | | 8. State the significance of pathway databases in bioinformatics. | (5) | | | | | | Write a Perl script to extract all protein sequences from a FASTA file and write them to a new
file. | | | | | | | 10. Explain the difference between identity and similarity searches, and describe how these type of searches are used in bioinformatics research. | es (5) | | | | | | 11. Explain the basic principles of Perl programming and its applications in bioinformatics research. | (5) | | | | | | 12. Write how bioinformatics can be used to personalize cancer treatment based on a patient's genomic profile. | (5) | | | | | | OR | | | | | | | Write about a hidden Markov model (HMM) and how it is used in bioinformatics. | (5) | | | | | | **************** | | | | | |