

Brainware University
Baracat, Kolkata - Tongo

BRAINWARE UNIVERSITY

Term End Examination 2021 - 22 Programme – Bachelor of Technology in Computer Science & Engineering Course Name – Linear Algebra and Differential Equations Course Code - BSC(CSE)201 (Semester II)

Time allotted: 1 Hrs.15 Min.

Full Marks: 60

[The figure in the margin indicates full marks.]

Group-A

(Multiple Choice Type Question)

1 x 60=60

Choose the correct alternative from the following:

(1)

The value of
$$\begin{vmatrix} 1 & \omega & \omega^2 \\ \omega^2 & 1 & \omega \\ \omega^2 & \omega & 1 \end{vmatrix}$$
 is .

- a) 0
- c) 2

- b) 1
- d) 3
- (2) If A is symmetric as well as skew-symmetric then A is a/an
 - a) Diagonal matrix
 - c) Identity matrix

- b) Null matrix
- d) None of these.

b) idempotent matrix

- 3) If A is an idempotent matrix then I-A is a/an
 - a) nilpotent matrixc) involuntary matrix
 - .
- (4) If A is a non-null square matrix, then A-A^T is a
 - a) symmetric matrix
 - c) null matrix
- (5) $(AB)^T =$
 - a) $A^{T}+B^{T}$
 - c) $B^T A^T$

- b) skew-symmetric matrix
- d) none of these.

d) none of these.

- b) A^TB^T
- d) none of these.
- (6) The co-factor of x in the determinant $\begin{vmatrix} x & 1 & 1 \\ 2 & -1 & 0 \\ 1 & 3 & 2 \end{vmatrix}$ is
 - a) -2

b) 4

c) 5	d) None of these
(17) Let α , β , γ be three vectors in a vector space V ove $c\alpha + d\beta + e\gamma = \theta$, where θ is the zero vector in V	rR, where R is the set of all real numbers. then the value of c,d,e are respectively.
a) 1,1,1 c) 1,0,0	b) 0,0,0 d) 0,1,1 Brown interestivers Berown Korkan -700
(18) If $\{\alpha, \beta, \gamma\}$ is a basis of a vector space V, then $\{\alpha, \beta, \gamma\}$	
 a) is a basis of V c) linearly independent but not a basis (19) Which of the following is not a subspace of R²? 	b) linearly dependent d) None of these
a) $\{(x,0): x \in R\}$	b) $\{(0,y):y\in R\}$
c) $\{(x,1): x \in R\}$	d) $\{(x,y): x=y; x,y\in R\}$
(20) Let $T: R^1 \to R^1$ be defined by $T(x_1, x_2, x_3) = (x_1 + 1, x_2 + 1)$ then T is a	$(x_1+1),(x_1,x_2,x_3) \in R^3$
a) linear mapping c) $T(\alpha+\beta) = T(\alpha) + T(\beta)$	b) is not a linear mappingd) None of these
(21) Let V and W be two vector spaces and T:V→W is a line the null vectors of V and W respectively, then	ear mapping and θ, θ' be
a) $Ker T = \{ \alpha \in V \mid T(\alpha) = \theta \}$	b) Ker $T = \{ \alpha \in V \mid T(\alpha) = \theta^1 \}$
c) $Ker T = \{ \alpha \in V \mid T(\alpha) = \alpha \}$	d) None of these
(22) If S is a subspace of a vector space (V,+,.) over R, where numbers. Then which of the following statement is false.	R is the set of all real
a) $\alpha + \beta \in S$ whenever $\alpha, \beta \in S$	b) $\alpha + 2\beta \in S$ whenever $\alpha, \beta \in S$
c) $-\alpha+\beta\in S$ whenever $\alpha,\beta\in S$	d) None of a, b, c is true.
(23) Let A and B be two subspaces of a vector space V , the	100
$A \cap B$ is a subspace of V .	b) both $A \cap B$ and $A \cup B$ are subspaces of V .
C) A \cup B is a subspace of V.	d) neither $A \cap B$ nor $A \cup B$ are subspaces of V.
(24) In a vector space V over R . Let $\alpha \in V$ and $\alpha \in R$. Then whice A and $A \in R$ and $A \in R$.	b) $a + \alpha \in V$
c) $\alpha^2 \in V$	d) $a \in V$
(25)	Si Nadi
The value of the linear combination $2\begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$ $M_{t=1}(R)$ is?	0 in the vector space 1
a) a scalar c) neither a scalar nor a vector	b) a vector d) both scalar and vector
(26) Which of the following is not linear transformation?	d) both scalar and vector

a) $T: \mathbb{R}^2 \to \mathbb{R}^2: T(x,y) = (3x - y, 2x)$	b) $T: \mathbb{R}^3 \to \mathbb{R}^2: T(x, y, z) = (3x+1, y-z)$
c) $T: \mathbb{R} \to \mathbb{R}^2 : T(x) = (5x, 2x)$	d) $T: \mathbb{R}^3 \to \mathbb{R}^2: \mathrm{T}(x, y, z) = (x, 0, z)$
(27) Let I be the identity transformation of the finite dimensional interpretation in the finite dimension in the finite dimension in the finite dimension in th	nsional vector space V, then the
a) dim(V) c) 1	b) 0 d) dim(V) - 1 Brishwars University Bernest, Kowart - TC
(28) A liner mapping $T: V \to W$ is injective if and only if	-
a) T is surjective	b) $Ker T=\{\theta\}$
c) Im $T=\{\theta\}$	d) $Ker T \neq \{\theta\}$
(29) Let T: R* → R* be a linear transformation. Which of implies that T is bijective?	ne of the following statement
 a) nullity(T) = n c) rank(T) + nullity(T) = n (30) 	b) rank(T) = nullity(T) = nd) rank(T) - nullity(T) = n
Which of the following is the linear transformation from	m R^3 to R^2 ?
(i) $ f\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 4 \\ x + y \end{pmatrix} $	
(ii) $g \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} xy \\ x+y \end{pmatrix}$	
(iii) $h \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} z - x \\ x + y \end{pmatrix}$	•
	h) aulu a
a) only fc) only h	b) only gd) all the transformations f,g,h
(31) Which of the following subsets of R ⁴ ?	
$B_{i} = \{(1,0,0,0), (1,1,0,0), (1,1,1,0), (1,1,1,1)\}$	
$B_2 = \{(1,0,0,0), (1,2,0,0), (1,2,3,0), (1,2,3,4)\}$	
$B_{i} = \{(1,2,0,0), (0,0,1,1), (2,1,0,0), (-5,5,0,0)\}$	
a)	b)
B_i and B_2 but not B_i	B_i , B_2 and B_3
c)	d)
(32) If $A^2 = A$, then its Eigen values are either	only B _i
a) 0 or 2	b) 1 or 2
c) 0 or 1	d) Only 0
(33) If $\lambda \neq 0$ is an Eigen value of a matrix A then the matrix	•
a) A	b) -2
c) ₁	d) Can Not be determined
- - - - - - - -	,

(34) If A is an orthogonal Matrix then what can	we say about the matrix A
a) Singular Matrix	b) Non-Singular Matrix
c) Symmetric Matrix	d) Skew-Symmetric matrix
(35) If A is an skew-symmetric matrix then which value of A	h of the following be an possible Eigen
a) 1	• b) -1
c) 0	d) None of -1,0,1
(36) If 0 is an Eigen value of a matrix Athen wh	ich of the following is false
a)	b)
0 is an Eigen value of A-1	0 is an Eigen value of A^{r}
c) A has no inverse matrix	d) A can't be orthogonal
(37) If A is an orthogonal matrix, then which of the	he following is not a possible Eigen value
a) -1	b) 0
c) 1	d)
	√-1
(38) If A is similar to the matrix B then A^{-1} is s	imilar to thematrix
a) A	b) <i>B</i>
c) B ⁻¹	d) A^{r}
(39) If η is an Eigen value of A and A similar t	o B then B always has an Eigen value
a) η^3	b) η^2
c) ₇₇	d) $\frac{1}{2}$
•	η .
(40) If α is an Eigen value and v is the corresponding which of the following is false	onding Eigen vector of a matrix A then
a) $Av = \alpha I$	b) $Av = av$
a) $Av = \alpha I$ c) $A^{-1}v = \frac{1}{\alpha}v$	d) Over a facility is false.
$A v = \frac{\alpha}{\alpha} v$	One of a, b, c is false
(41) If $V = R^3$ be equipped with inner product (x	$(x, y) = x_1 y_1 + 2x_2 y_2 + 3x_3 y_3$, In this inner
	1 0
product space $(V, ())$ then the value of th	e inner product of $u = \begin{bmatrix} 1 \\ \frac{1}{\sqrt{3}} \end{bmatrix}, v = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{\sqrt{3}} \end{bmatrix}$
a) <u>2</u>	b) _{2√2}
√2	27/2
c) _	d) $\frac{\sqrt{3}}{2}$
2	$\frac{\sqrt{3}}{2}$
. (42)	
(42) If $V = R^{1}$ be equipped with inner product (x	$(x, y') = x_1 y_1 + x_2 y_2 + x_3 y_3$, In this inner

b)

a)

$$u = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, v = \begin{bmatrix} 0 \\ \frac{1}{2} \\ 0 \end{bmatrix}$$

Barrens - 175/8128 ;

(c)
$$u = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, v = \begin{bmatrix} 0 \\ 1 \\ i \end{bmatrix}$$

d)
$$u = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, v = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

- (43) Any set of linearly independent vectors can be orthonormalized by the:
 - a) Cramer's rule

b) Sobolev Method

c) Gram-Schmidt procedure

d) Pound-Smith procedure

- (44) The diagonalizing matrix is also known as:
 - a) Eigen Matrix

b) Constant Matrix

c) Modal Matrix

d) State Matrix

(45) If $V = R^3$ be equipped with inner product $(x, y) = x_1y_1 + x_2y_2 + x_3y_4$. Then which of the following set of vectors are linearly independent.

b) ((0,1,0),(0,-1,0),(0,0,1))

c) ((0,1,0),(0,0,1),(-1,0,1))

d) ((1,0,1),(0,1,0),(-1,0,1))

(46) If α and β be two orthogonal vectors in a Euclidean space (R", ||, ||), then which of the following relation holds.

a)
$$\|\alpha + \beta\|^2 = \|\alpha\|^2 - \|\beta\|^2$$

b)
$$\|\alpha + \beta\|^2 = \|\alpha\|^2 + \|\beta\|^2$$

c)
$$\|\alpha + \beta\|^2 = 2(\|\alpha\|^2 - \|\beta\|^2)$$

d)
$$\|\alpha + \beta\|^2 = 2(\|\alpha\|^2 + \|\beta\|^2)$$

(47) Let A be a 3×3 matrix of real numbers and A is diagonalizable then which of the following statement is true.

a) A has 3 l.d Eigen vectors

b) A has 3 1.i Eigen vectors

c) A has 3 distinct Eigen values

d) Two of a, b and c is true

(48) If λ is an Eigen value of an orthogonal matrix A the which of the following statement is false

a)
$$\det(A - \lambda D = 0$$

b)
$$\det(A - \frac{1}{\lambda}I) = 0$$

c)
$$det(A^{-1} - \lambda I) = 0$$

d) One of a, b and c is false

(49) If λ is the only Eigen value (real or complex) of an $n \times n$ matrix A then det A=

a) λ

b) გ*

c) 22

- d) ηλη-1
- (50) The differential equation $(a_1x b_1y)dx + (a_2x b_2y)dy = 0$ is exact if

a) $a_1 = b_2$

b)
$$b_1 = b_2$$

c) $a_1 = -b_2$

- d) $a_2 = -b_1$
- (51) If $x^m y^m$ be the IF of the equation (2ydx + 3xdy) + 2xy(3ydx + 4xdy) = 0 then the value of m and n are respectively
 - a) 1, 3

b) 2, 1

c) 2, 2

d) 1, 2

(52) The integrating factor of $ydx - xdy + 4x^3y^2e^{x^2}dx = 0$ is

Page 6 of 7

c)

Eminimeter University Britishmeter University Burnest, Kolheter -700126

- (53) The general form of a first order linear equation in x is $\frac{dv}{dx} + Px = Q$ where
 - a) P and Q are both functions of x

- b) P and Q are both functions of y
- c) P and Q are the functions of x and y, respectively
- d) P and Q are the functions of y and x, respectively

- (54) $\frac{1}{(D^2 2D + 2)} \cos x =$
 - a) $\frac{1}{5}(-2\sin x + \cos x)$

b) $\frac{1}{10}\cos x$

c) $\frac{1}{5}(2\sin x + \cos x)$

- d) None of these
- (55) The CF of the equation $x^2 \frac{d^2y}{dx^2} 2x \frac{dy}{dx} = 3x$ is
- a) $c_1x+c_2e^{3x}$

b) $c_1 e^x + c_2 e^{3x}$

c) $c_1 + c_2 e^{3x}$

- d) None of these
- (56) The integrating factor of $\cos x \frac{dy}{dx} + y \sin x = 1$ is
 - a) tan x

b) cos x

c) sec x

- d) sin x
- (57) A particular solution of $\frac{d^2y}{dx^2} + y = 0$ when x=0, y=4; $x = \frac{\pi}{2}$, y=0 is
 - a) $y = A\cos x$

b) $y = 5\cos x$

c) $y = 4\cos x + 2\sin x$

d) $y = 4\cos x$

- (58) $\frac{1}{(D-2)(D-3)}e^{2x} =$
- a) __e2x

b) xe2x

c) $-xe^{3x}$

d) _ - 22

- $\frac{1}{D^2 + 2} x^2 e^{3x} =$
 - a) $\frac{1}{11} \left(x^2 \frac{12x}{11} \right)$

b) $\frac{1}{11} \left(x^2 - \frac{12x}{11} + \frac{60}{121} \right)$

c) $\frac{1}{11} \left(x^2 - \frac{12x}{11} + \frac{50}{121} \right)$

- None of these
- (60) The Wronskian for the differential equation $\frac{d^2y}{dx^2} 3\frac{dy}{dx} + 2y = 9e^x$ is
 - a) _e2x

b) ج×

c) e3x

d) None of these