

Blainware University Servent, Kolkan -700125

BRAINWARE UNIVERSITY

Term End Examination 2021 - 22

Programme – Bachelor of Technology in Computer Science & Engineering- Data Science
Course Name – Probability and Statistics

Course Code - BSCD201

(Semester II)

Time allotted: 1 Hrs.15 Min.	
[The figure in the margin	Full Marks : 60
S and the margin	indicates full marks.]
Group	-A
Choose the correct alternative from the following:	Type Question) 1 x 60=60
(1) If the third moment about mean is zero then the distri	and the state of t
a) Mesokurtic	
c) Symmetrical	b) Positively Skewed
(2) For Mesokurtic curve of the distribution, β_2 is	d) Negatively Skewed
a) 0	
c) >3	b) <3
(3) The number of accidents in a city during 2010 is	d) =3
a) Discrete variable	N.C.
c) Qualitative variable	b) Continuous variable
(4) The variance of first n natural numbers is	d) Constant
a) $n^2 - 1$	b) $\frac{n^2-1}{10}$
c) $\frac{n^2}{12}$	d) $\frac{n^2-1}{12}$
(5) The correlation coefficient is used to determine:	
 a) A specific value of the y-variable given a specific value of the x-variable 	 b) A specific value of the x-variable given a specific value of the y-variable
 c) The strength of the relationship between the x and y va riables. 	d) None of these
(6) The mean of a distribution is 14 and the standard devent of variation?	riation is 5. What is the value of the coefficie
a) 60.4%	b) 48.3%
c) 35.7%	d) 27.8%
(7) The middle value of an ordered array of numbers is t	he

a) Mode

b) Mean

e) Median	d) Mid-point	
(8) If the coefficient of determination is equal to 1	, then the correlation coefficie	ent
a) Must be equal to 1	b) Can be either -1 o	r+1
c) Can be any value between -1 and +1	d) Must be -1	
(9) The most frequently occurring value of a data	set is called the	
a) Mean	b) Median	Danier Universit
e) Mode	d) Variance	Bereval, Kotkam -7001
(10) The value of any regression coefficient is zero, the	en two variables are	Gen godard Isoland
a) Dependent	b) Independent	
c) Correlated	d) None of these.	
(11) When regression line passes through the origin	n then	
a) Regression coefficient is zero	b) Correlation is zero	,
c) Intercept is zero	d) Association is zero	0
(12) The sum of the deviations about the mean is a	lways:	
a) Range	b) Zero	
c) Total Standard Deviation	d) Positive	
(13) When b_{xy} is positive, then b_{yx} , will be		
a) Positive	b) Negative	
c) Zero	d) One	
(14) The data which have already been collected b		
a) Raw data	b) Array data	
c) Secondary data	d) Fictitious data	
(15) Type of cumulative frequency distribution in er is classified as:	which class intervals are added	d in top to bottom ord
a) variation distribution	b) less than type dis	tribution
c) more than type distribution	d) marginal distribu	tion
(16) 'less than type distribution' and 'more than ty	pe distribution' are types of	
a) class distribution	b) cumulative class	distribution
c) cumulative frequency distribution	d) upper limit distri	bution
(17) Types of frequency distribution are		
a) 3	b) 4	
c) 5	d) 2	
(18) Total of frequency up to an upper class limit	or boundary is known as	
a) average frequency	b) cumulative frequ	uency
1: atmibution	d) frequency polyg	on
(19) A bar chart constructed in which area of eac	ch bar is proportional to numbe	er of items in each grou
p is known as	b) histogram	
a) pi chart	d) polygon	
c) frequency distribution table	/ • · ·	
(20) The sum of frequencies for all classes will a	b) the number of e	lements in data set
a) 1	d) a number betw	een 0 to 1
1 or of classes		
(21) The sum of the relative frequencies for all c	b) the number of c	elasses
a) the sample size	d) larger than the	sample size
c) one	a) m.B. m.	
(22)	Page 2 of 7	
	LICAD / ()] /	

Page 2 of 7

The following data show the number of he

Number of Hours	Students	or nours worked by	200 statisti
0-9	40		UBHARY
10 - 19	50		Stainware University
20 - 29	70		
30 - 39	40		

The class width for this distribution is

- a) 9
- c) 11

23)

- b) 10
- d) Varies from class to class

The following data show the number of hours worked by 200 statist

Number of Hours	Students
0 - 9	40
10 - 19	50
20 - 29	70
30 - 39	40

The number of students working 19 hours or less is

- a) 40
- c) 90

- b) 50
- d) cannot be determined without the original data

The following data show the number of hours worked by 200 statis

Number of Hours	Students
0 - 9	40
10 - 19	50
20 - 29	70
30 - 39	40

The cumulative frequency for the class of 10-19

- a) 90
- c) 110
-) The grouped data is also called
- a) Raw Data
- c) Secondary data

- b) 120
- d) 160
- b) Primary Data
- d) Qualitative data

Page 3 of 7

(26) V	Which of these re	present quanta	iive data?			
	Height of a stude			b) Liking o	or disliking of (50	00) persons of a produ
	The income of a				om a wheat plot	a produ
		owing is not ba	sed on all the obs	b) Median		
	Mean			d) None of	these	Lien, wy
	Mode	i	sura of central ten	,	Bn	mores University
	Percentile	owing is a meas	sure of central ten	b) Quartile	i dea €	
41 1	Standard Deviati	on		d) Mode		
			rice were 350, 280		310, 300. The re	ango is
(23) II		cs of a dag of i	ice were 330, 200	b) 70	oro, ooo. The p	ange is
c)				d) 100		
	elation between	A.M. G.M and	I H.M			
	A.M>G.M>H.M			b) A.M=G	.M=H.M	
,	A.M <g.m<h.m< td=""><td></td><td></td><td>d) None of</td><td></td><td></td></g.m<h.m<>			d) None of		
(31) Ir ue	n a Binomial (n,pes of n and p are	o) distribution,	if its mean and va	ariance are 2 and	1 16/9 respective	ly, then the val
a)				b) 16,1/9		
	18,1/9					
c)	16,1/8			d) 18,1/8		
		or which mean	and variance are			
	Poisson	or winen mean	and variance are	b) Norma	1	
	Binomial			d) Exponential		
(33)				d) Expond	ciittai	
	or the distrib	oution				
Г	X	3	5	7		
	Ne se			,	9	
	$\mathbf{f_i}$	$\frac{1}{2}$	1	1_	11	
		2	5	7	70	
						1
11	f Y=3X+1 th	en P(Y=22)	is			
a) 1	1/2			b) 1/5		
c) 3	3/10			d) 1/7		
(34) Ho an	ow many outcomes.	mes are possib	le if 3 new emplo		selected from a	group of 5 applic
a) 1	10			b) 12		
c) 1	15			d) 30		
(35) Th	ne variance of a	random varial	ole x is			
	E(x) ²			b) $E(x^2)$)	
c)	$E(x^2) - \{E(x)\}^2$	2		d) Non	e of these	
(36) A se	bag of 45 marb lecting 12 from	les contains 20 the bag and h	ored, 15 blue, ar aving 3 red, 4 bl	nd 10 yellow. W	hat is the proba	bility of randomly
a) (0.0	G II	g 5 1ca, 7 01			
c) 0.0923			b) 0.058			
				d) 0.013	00	

(37) The mean of the binomial distribution is		
a) less than the variance c) greater than its variance	b) equal to its variance	
(38) A set of all possible outcomes of an experiment i	d) greater than or equal to its variance	
a) Combination	a caned	· ()
c) Sample space	b) Sample point	10KV 81 5 64
(39) A coin is tossed . The events {H}, {T} are	d) Compound event	-100
a) mutually exclusive	b) independent	
c) dependent events	 b) independent events d) both mutually exclusive and dependent e∀ 	ent
(40) If $P(A) = \frac{1}{3}$, $P(B) = \frac{1}{4}$, $P(A \cup B) = \frac{1}{2}$, then $P(A \cup B) = \frac{1}{2}$, then $P(A \cup B) = \frac{1}{2}$.	² (B / 4) is	
a) 3/4		
c) 1/4	b) 4/3	
(41) If for a random variable	d) 1/3	
(41) If for a random variable X, $Var(X) = 1$, then	a $Var(2X+3)$ is	
a) 1		
c) 4	b) 2	
(a) The probability $P(a \le Y \le b)$ (where $F(a)$)	d) None of these	
The probability $P(a \le X \le b)$ (where $F(x)$ is variable X) is defined by	the distribution function of the random	
a) $F(b)-F(a)$	b) F(b) : F(c)	
c) $F(a)-F(b)$	b) $F(b)+F(a)$	
F(a)-F(b)	d) F(a) F(b)	
(43) The many 1		
The mean and standard deviation of a Binon	ial distribution are respectively 4 and	
$\sqrt{\frac{8}{3}}$. The values of n and p are (where n and distribution)	p are the parameters of the probability	
a) 11,3/4	b) 12.27	
c) 12,1/3	b) 12,2/7	
(44) Two even A and B are mutually exclusive is	d) 11,4/3	
a) $P(A \cup B) = P(A)P(B)$	b) $P(A \cap B) = P(A)P(B)$	
c) $P(A \cap B) = 0$	d) None of these	
(45) If $P(A) = 0.2$, $P(B) = 0.4$, $P(A \cup B) = 0.6$		
a) mutually exclusive		
c) exhaustive	b) independent	
	d) complement of each other	
(46) The probability of any event A satisfies		
a) $P(A) \ge 1$	b) $P(A) < 0$	
c) $0 \le P(A) \le 1$	d) none of these.	
(47) Three coins are tossed at random Than the		
(47) Three coins are tossed at random. Then the	e probability that there will be at least one h	ead is
a) 3/8	b) 7/8	
c) 2/9	d) 5/8	
(48) One card is drawn from a pack of 52 card	ls. The probability which is either king or or	neen is

a) 1/13	b) 3/13
c) 2/13	d) 4/13
	probability that an odd point or six will appear on the top of the di
e is	probability that an odd point of any tree appropriate
a) 1/2	b) 1/3
c) 2/3	d) None of these
(50) A bag contains five red and for they match is	ur black balls. Two balls are drawn at random. The probability that
a) 2/9	b) 4/9
c) 5/9	d) 7/9
(51) The probability that A passes	a test is $\frac{2}{3}$ and the probability that B passes a test is $\frac{3}{5}$. The
probability that one of them pas	ses is
a) 4/5	b) 7/15
c) 3/5	d) 5/9
(52) 50 tickets are serially numbered ty of it being a multiple of 3 of	ed 1 to 50. One ticket is drawn from these at random. The probabili or 4 is
a) 12/25	b) 6/25
c) 18/25	d) 7/25
(53) In rolling two fair die, the pro	bability of getting equal numbers or numbers with an even product
a) 5/6	b) 1/6
c) 3/4	d) 3/6
(54) One number is selected at rar	ndom from 1 to 100. The probability that it is a perfect square is
a) 3/7	b) 5/7
c) 1	d) 1/7
(55) If $P(X=x) = \frac{x}{21}$, for $x=1,2,$, =0,elsewhere	6, then P(X=2 or 3) is
	b) 3/21
a) 2/21	d) 5/21
c) 4/21	
(56)	has the following p.d.f $f(x) = \frac{1}{4}$, $-2 < x < 2$, then P(2X+ =0, elsewhere
A random variable X	has the following p.d.1 4 , then = 0, elsewhere
	-0, CBC1
	b) 1/2
a) 1	d) 3/4
c) 1/4	I distribution $B(n, p)$ (where n and p are the number of t
probability of success) is
	b)
a) <u>n</u>	0
p	d) 1
c) np	HOT BEST IN THE BUILDING IN
(58) The mean of a Poisso	on distribution with parameter μ is
	b) μ^2
$^{\mathrm{a})}\mu$	Promitive University

c) - 11

d) - μ^2

(59) Var(2X+3)=?

- a) 2Var(X)
- c) 2Var(X)+3
- (60) The standard deviation is always _
 - a) Less
 - c) equal

b) 4Var(X)

d) None of these

than the mean deviation

- b) Greater
- d) none of these

