Brainware University Barasat, Kolketa -700125 ## BRAINWARE UNIVERSITY ## Term End Examination 2021 - 22 Programme - Bachelor of Technology in Computer Science & Engineering Course Name - Compiler Design Course Code - PCC-CS601 | (Semeste | r VI) | |--|--| | | Full Marks: 70 | | Time allotted: 1 Hrs.25 Min. [The figure in the margin | indicates full marks.] | | The figure in the margin | indicates full manas-j | | Group | -A | | (Multiple Choice T | 1×10^{-10} | | Choose the correct alternative from the following: | | | | | | (1) A grammar that produces more than one parse tree for | r some sentence is called as | | a) Ambiguous | b) Unambiguous | | c) Regular | d) All of these | | (2) Lexical analysis is about breaking a sequence of chara- | acters into | | a) Groups | b) Packets | | c) Lines | d) Tokens | | (3) is the most general phase structured gramma | ar. | | a) Context sensitive | b) Regular | | c) Context free | d) All of these | | (4) Compiler should report the presence ofi | in the source program, in translation proces | | s. | | | a) Classes | b) Objects | | c) Errors | d) Text | | (5) How many parts of compiler are there? | | | a) 1 | b) 2 | | c) 4 | d) 8 | | (6) What is the action of parsing the source program into | proper syntactic classes? | | a) Lexical analysis | b) Syntax analysis | | c) General syntax analysis | d) Interpretation analysis | | (7) is considered as a sequence of characters i | | | | b) Lexeme | | a) Mexeme | d) Texeme | | c) Pattern | a, reneme | | (8) The regular expression 1*(01*01*)* denotes | 1.) | | a) set of all strings of 0's and 1's with even number
of 0's | b) set of all strings of 0's and 1's | Page 1 of 6 c) set of all strings of 0's and 1's with odd number of d) none of these 1's | (9) If x is a terminal, then FIRST(x) is | | |--|--| | | b) {x} | | a) € | d) none of these | | c) x^* (10) The set of all strings over $\Sigma = \{a,b\}$ in which all stri | ngs having bbbb as substring is | | (10) The set of all strings over \mathbb{Z} | | | a) (a+b)* bbbb (a+b)* | d) bb (a+b)* | | c) $bbb(a+b)^*$ (11) The set of all strings over $\sum = \{a,b\}$ in which a single | e a is followed by any number of b's a single | | b followed by any number of a s is | b) ab*ba* | | a) ab* + ba* | d) none of these | | c) $a*b + b*a$ | DEA using subset construction method | | c) a*b + b*a (12) The following functions are used to convert NFA to | b) move | | a) €-closure | d) none of these | | c) both a and b | d) Holic of these | | (13) The grammar $E \rightarrow E + E \mid a$ suffers | | | a) Left factoring | b) Left recursion | | c) Both a and b | d) None of these | | (14) Which of the following error will not be detected by | | | a) Lexical error | b) Syntactic error | | c) Semantic error | d) Logical error | | (15) An annotated parse tree is | | | a) A parse tree with attribute values shown at the par se tree nodes | b) A parse tree with values of only some attributes s
hown at the parse tree nodes | | c) A parse tree without attribute values | d) None of these | | (16) The left recursion produces | | | c) A parse tree without attribute values (16) The left recursion produces a) infinite loop c) no problem at all (17) Left factoring guarantees | b) ambiguity | | c) no problem at all | d) None of these | | (17) Left factoring guarantees | | | a) Error free target code | b) Cycle free parse tree | | c) Not occurring of backtracking | d) Correct LL(1) parse table | | (18) A parse tree showing the values of attributes at each | | | | b) Annotated parse tree | | a) Syntax tree | d) Direct acyclic graph | | c) Syntax directed parse tree | d) Direct acyclic graph | | (19) Which of the following is the most powerful parser? | LALAID | | a) CLR | b) LALR | | c) SLR | d) Operator precedence | | (20) Three address code involves | | | a) Exactly three addresses | b) At most three addresses | | c) No unary operator | d) None of these | | (21) Compiler can check error. | | | a) Logical | b) Content | | c) Content | d) Syntax | | (22) The regular expression representing the set of all string h y is | ngs over (x,y) ending with xx beginning wit | | a) $xx(x+y)*y$ | b) $y(x+y)*xx$ | | c) yy(x+y)*x | d) y(xy)*xx | | | | | (23) S \rightarrow AB, A \rightarrow a, B \rightarrow b To check whether the string r (using shift-reduce parser) we need at least | g at is the language of the above gramma | | a) 3 shift 3 reduces | b) 2 shift 3 reduces | Library | | |---|---|---|--| | c) 2 shift 2 reduces | d) 3 shift 2 reduces | Brainware Unive | | | | c) 2 shift 2 reduces d) 3 shift 2 reduces 4) The intersection of a regular language and a context free language is 398, Ramkrishnapur Ro | | | | a) always a regular language | b) always a context free language | 398, Ramkrishnapor
Kolkala, West Benga | | | c) always a context sensitive language | d) None of these | | | | (25) The following production of a regular gramm gular expression for L is | har generates a language L. S \rightarrow aS bS a b T | The re | | | a) A+b | b) (a+b)* | | | | c) $(a+b)(a+b)^*$ | d) (aa+bb)a* | | | | (26) Which one is a lexer generator | | | | | a) ANTLR | b) DRASTAR | | | | c) FLEX | d) All of these | 2) | | | (27) Given the language L={ab,aa,baa}, which of abaaaa 3)baaaaabaaaab baaaaabaa | | a 2)aaa | | | a) 1,2,3 | b) 2,3,4 | | | | c) 1,2,4 | d) 1,3,4 | | | | (28) Which of the following identity is true? | | | | | $a) \in +RR^* = R^* = \in +R^*R$ | b) $(R1R2)*R1 = R1(R2R1)*$ | | | | c) R*R* = R* | d) All of these | | | | (29) The number of tokens in the following C star | | | | | a) 5 | b) 6 | | | | c) 7 | d) 8 | | | | (30) The grammar $S \rightarrow S + S \mid S * S \mid id$ is | | | | | a) ambiguous | b) unambiguous | | | | c) not given sufficient information | d) None of these | | | | (31) € never contains in | | | | | a) FIRST | b) FOLLOW | | | | c) Both a and b | d) None of these | | | | (32) SR parser means | | | | | a) Stack reduce parser | b) Shift reduce parser | | | | c) Shift right parser | d) None of these | | | | (33) $S \rightarrow \epsilon$, FOLLOW(S) = ? | | | | | (a) {\$,€} | b) {\$} | | | | c) {€} | d) None of these | | | | (34) If L1 and L2 are regular languages is/are als | so regular language(s). | | | | a) L1 + L2 | b) L1 L2 | | | | c) L1 | d) All of these | | | | (35) A top down parser generates | | | | | a) leftmost derivation | b) rightmost derivation | | | | c) leftmost derivation in reverse | d) rightmost derivation in rever | rse | | | (36) A basic block can be analyzed by | | | | | a) DAG | b) Flow graph | | | | c) Graph with cycles | d) None of these | | | | | 2,2 | | | | (37) The peep-hole optimization is | b) constant folding | | | | a) Strength Reduction | d) None of this | | | | c) A & B both | | mnilation c | | | (38) Consider the program statement x=2 where | x is a Boolean variable. Which stage of co | inpliation c | | | | an detect the error? | | | |---------------------|--|---|--| | | a) Lexical analysis | b) Syntax analysis | | | | | d) Code generation | | | | (39) Which table is a permanent database that has an entry | for each terminal symbol? | | | | a) Reductions | | | | | c) Literal table | d) Terminal table | | | | (40) Synthesized attribute can be easily simulated by a | | | | | a) LR grammar | b) LL grammar | | | | | d) None of these | | | | c) Ambiguous grammar (41) Which of the following class of statement usually produced | luces no executable code when compiled? | | | | a) Assignment statement | b) Structural statements | | | | | d) Input and output statements | | | | c) Input and output statements (42) Which of the following symbol table implementation has the minimum access time? (b) Linear | | | | | (42) Which of the following symbol table impression list | b) Linear | | | | a) Self-organizing list | d) Hash table | | | | c) Search tree(43) The optimization which avoids test at every iteration i | s? | | | | | b) Loop jamming | | | | a) Loop unrolling | d) None of the mentioned | | | | c) Constant folding | | | | | (44) A language L from a grammar $G = \{ VN, \Sigma, P, S \}$ is? | b) Set of symbols over Σ | | | | a) Set of symbols over VN | d) Set of symbols over S | | | | c) Set of symbols over P | | | | | (45) What is the transitional function of a DFA? | b) Q X Σ→2Q | | | | a) $Q \times \Sigma \rightarrow Q$ | d) Q X $\Sigma \rightarrow Qn$ | | | | c) Q X $\Sigma \rightarrow 2n$ | | | | | (46) In a single pass assembler, most of the forward reference | ences can be avoided by paring in results | | | | on | b) Code segment to be defined after data segment | | | 13 | a) On the number of strings/file reacts | d) None of the mentioned | | | Bara | c) On unconditional rump | d) None of the means | | | Ver
dad | (447) What is the function of the syntax phase? | L | | | Schingour H | a) Q X Σ→Q c) Q X Σ→2n (46) In a single pass assembler, most of the forward refere on a) On the number of strings/life reacts c) On unconditional rump (47) What is the function of the syntax phase? a) recognize the language and to cal the appropriate action routines that will generate the intermediate form or matrix for these constructs c) Build a uniform symbol table (48) If E be a shifting operation applied to a function f, su | b) Build a literal table and an identifier table | | | 8, Ramer
Kolkata | c) Build a uniform symbol table | d) Parse the source program into the basic element or tokens of the language | | | છ | (48) If E be a shifting operation applied to a function f, such that $E(f) = f(x + \beta)$, then? | | | | | a) E $(\alpha f + \beta g) = \alpha E(f) + \beta E(g)$ | b) E $(\alpha f + \beta g) = (\alpha + \beta) + E(f + g)$ | | | | c) E ($\alpha f + \beta g$) = $\alpha E (f + g\beta)$ | d) E ($\alpha f + \beta g$) = $\alpha \beta$ E ($f + g$) | | | | (49) Which of the following functions is performed by loa | | | | | a) Allocate memory for the programs and resolve sy | | | | | mbolic references between objects decks | b) Address dependent locations, such as address correspond to the allocated space | | | | c) Physically place the machine instructions and data into memory | d) All of the mentioned | | | * | (50) The root directory of a disk should be placed | | | | | a) At a fixed address in main memory | b) At a fixed location on the disk | | | | c) Anywhere on the disk | d) None of the mentioned | | | | (51) Which of these is not true about the Symbol Table? | , and mentioned | | | | a) All the labels of the instructions are symbols | b) Table has a second drace value | | | | c) Perform the processing of the assembler directive | b) Table has entry for symbol name address value | | | | Page 4 | d) Created during pass 1 | | | | , ugo - | 1 01 0 | | | S | | |--|--| | (52) Which of the following describes a handle (as applicab | le to LR-parsing) appropriately? | | a) Position where next reduce or shift operation will occur | b) The next step has use of Non-terminal for reducti
on | | c) Used for reduction in a coming-up step along with
a position in the sentential form where the next sh
ift or reduce operation will occu | d) Used in the next step for reduction along with a p
osition in the sentential form where the right hand
side of the production may be found | | (53) The grammar $A \rightarrow AA \mid (A) \mid e$ is not suitable for pred | lictive-parsing because the grammar is? | | a) Ambiguous | b) Left recursive | | c) Right recursive | d) An operator grammar | | (54) A context free language is called ambiguous if | | | a) It has 2 or more left derivations for some termina
1 string w ∈ L (G) | b) It has 2 or more right derivations for some termin
al string w ε L (G) | | c) It has 2 or more left & right derivations for some t
erminal string w ε L (G) | d) None of the mentioned | | (55) The context free grammar S \rightarrow SS 0S1 1S0 ϵ general | erates | | a) Equal number of 0's and 1's | b) Unequal number of 0's and 1's | | c) Number of 0's followed by any number of 1's | d) None of the mentioned | | (56) Push down automata accepts which language? | The University of 150,52 | | a) Push down automata accepts which language? | d) None of the mentioned b) Context free language d) None of the mentioned Brainware University Bares Brainware Properties Propertie | | c) Recursive language | d) None of the mentioned | | (57) A CFG is closed under | ,. | | a) Union | b) Kleene star | | c) Concatenation | d) All of the mentioned | | (58) The production Grammar is {S->aSbb, S->abb} is? | | | a) type-3 grammar | b) type-2 grammar | | c) type-1 grammar | d) type-0 grammar | | (59) A simple two-pass assembler does which of the following | owing in the first pass? | | a) It allocates space for the literals | b) Calculates total length of the program | | c) Symbol table is built for the symbols and their value | d) All of the mentioned | | (60) A system program that set-up an executable program | n in the main memory ready for execution is? | | a) Assembler | b) Linker | | c) Loader | d) Text editor | | (61) A compiler is a program that | | | a) Program is put into memory and executes it | b) Translation of assembly language into machine la nguage | | c) Acceptance of a program written in a high level l
anguage and produces an object program | d) None of the mentioned | | (62) The computer language generally translated to pseu | idocode is | | a) Assembly | b) Machine | | c) Pascal | d) FORTRAN | | (63) Generation of intermediate code based on a abstrac | t machine model is useful in compilers becaus | | e | • | | a) Implementation of lexical analysis and syntax analysis is made easier | b) Writing for intermediate code generation | | c) Portability of the front end of the compiler | d) None of the mentioned | | (64) Which type of grammar is it? $S \rightarrow abS S \rightarrow a$ | | | | b) Left Linear Grammar | | a) Right Linear Grammar | e 5 of 6 | | c) Right & Left Linear Grammar | d) None of the mentioned | |---|--| | (65) Which of the following statements is false? | | | a) Left as well as right most derivations can be in Un
ambiguous grammar | b) An LL (1) parser is a top-down parser | | c) LALR is more powerful than SLR | d) Ambiguous grammar can't be LR (k) | | (66) What is the idea of automation with a stack as auxilia | ry storage? | | a) Finite automata | b) Push Down Automata | | c) Deterministic Automata | d) None of the mentioned | | (67) A context free language is called ambiguous if? | | | a) It has 2 or more than 2 left derivations for some te
rminal string w ∈ L (G) | b) It has 2 or more than 2 right derivations for some terminal string $w \in L(G)$ | | c) It has 2 or more than 2 left and right derivations f
or some terminal string w ∈ L (G) | d) None of the mentioned | | (68) Which of the following identity is wrong? | | | a) R + R = R | b) $(R^*)^* = R^*$ | | c) $ER = R\varepsilon = R$ | d) $\emptyset R = R\emptyset = RR^*$ | | (69) A Push Down Automata is if there is at most one tran | sition applicable to each configuration? | | a) Deterministic | b) Non deterministic | | c) Finite | d) Non finite | | (70) An intermediate code form is | | | a) Postfix notation | b) Syntax Trees | | c) Three Address code | d) All of the mentioned | | | |