

BRAINWARE UNIVERSITY

LIBRARY University
Brainware Kolkete -780125

Term End Examination 2023
Programme – B.Tech.(ECE)-2019/B.Tech.(ECE)-2020
Course Name – Control Systems
Course Code - PCC-EC601
(Semester VI)

	l Marks : 60 The figure in the margin indicates full marks. Can own words as fa	Time: 2:30 Hood didates are required to give their answers in their as practicable.]	a rs r	
1.	Grou (Multiple Choice Choose the correct alternative from the following	Type Question)	5	
(i)	Judge the damping ratio, if overshoot is excessive			
	a) > 0.4c) < 0.4Transient response in the system is basically du	b) = 0.4 d) Infinity		
	a) Forces c) Stored energy Stability of a system implies that	b) Friction d) Coupling		
	a) Small changes in the system input does not result in large change in system output	 b) Small changes in the system parameters does not result in large change in system output 		
	c) Small changes in the initial conditions does not result in large change in system output	d) All of the above mentioned		
iv)	The relationship between an input and output variable of a signal flow graph is given by the net gain between the input and output node is known as the			
	a) Overall gain of the systemc) BandwidthSignal flow graphs	b) Stability d) Speed		
	a) apply to linear systems	b) The equation obtained may or may not be in the form of cause or effect		
	c) Arrows are not important in the graph	d) They cannot be converted back to block diagram		

(vi) By equating the denominator of transfer function to zero, choose among the following

b) Zeros

d) None of the above

will be obtained

c) Both a and b

a) Poles

(vii) Transfer function of the system is defined as t input considering initial conditions	he ratio of Laplace output to Laplace		
a) 1	b) 2		
c) 0	d) infinite		
Milii) Montify the averall transfer function of two b	•		
a) Sum of individual gain c) Difference of individual gain (ix) The forward path transfer function is given by	b) Product of individual gain		
c) Difference of individual gain	d) Division of individual gain		
(ix) The forward path transfer function is given by order of the system:	/ G(s) = 2/s(s+3). Determine the type	e and	
a) 1, 2	b) 2, 2		
c) 0, 2	d) 1, 1		
(x) The gain margin of a second-order system is:			
a) Zero	b) Infinite		
c) One	d) Two		
(xi) The number of roots in the left half of the s-pl+ 1 = 0 is	ane of the given equation s^3 + 3s^	2 + 4s	
a) 1	b) 3		
c) 2	d) 0		
(xii) Control System is described as			
a) Control system is a system in which the	b) Control system is a device that	will not	
output is controlled by varying the input	manage or regulate the behavio	our of other	
	devices using control loops		
c) Control system is a feedback system that	d) Control System is a system in w		
can be both positive and negative (xiii) The impulse response of an RL circuit is	input is controlled by varying th	e output	
a) Parabolic function	b) Step function		
c) Rising exponential function (xiv) Feedback control system is basically	d) Decaying exponential function		
a) Band pass filter	h) Donal at 100		
c) High pass filter	b) Band stop filter		
(xv) Select the following is the input of a controller	d) Low pass filter		
a) Signal of fixed amplitude not dependent on	b)		
desired variable value	b) Desired variable value		
c) Desired variable value	d) Error signal		
Group (Short Annual T			
(Short Answer Ty	pe Questions)	3 x 5=15	
2. Explain the properties of state transition matrix.		(3)	
3. Define Transfer function of a closed loop system. Exploration.		(3)	
4. Distinguish Absolute stability and Relative stability.		(3)	
5. Explain underdamped, overdamped and critically damped system with graph.			
6. Explain the advantages of bode plots.		(3)	
OR Explain the advantages of frequency response analysis	vsis	/2\	
	•	(3)	
Group			
(Long Answer Typ	e Questions)	5 x 6=30	

7. A unity feedback system has a forward path transfer function G(s)=8/(s+2).Identify the value of damping ratio, undamped natural frequency of the system, percentage over shoot, peak time and settling time.

(5

- Evaluate the stability of the system whose characteristic equation is given by $2s^4 + 2s^3 + s^2 + 3s + 2 = 0$

(5)

9. Identify the stability of the system whose characteristic equation is given by 2s^4+2s^3+s^2+3s+2=0 10.

(5)

Obtain the rise time, peak time, maximum peak overshoot and settling time of unit step response of a closed loop system given by

$$\frac{C(s)}{R(s)} = \frac{16}{(s^2 + 2s + 16)}$$

Brahwara University Barasat, Kolkala - 700125 (5)

Sketch the polar plot for $G(s) = \frac{1}{s(s+1)}$.

11.

Evaluate the transfer function of C(s)/R(s) of the system whose signal flow graph is shown in the Fig.

OR

A system characterised by the transfer function

$$\frac{Y(s)}{u(s)} = \frac{2}{s^3 + 6s^2 + 11s + 6}.$$

Evaluate the state and output equation in matrix form