

BRAINWARE UNIVERSITY

Term End Examination 2023

Programme – B.Tech.(CSE)-2019/B.Tech.(CSE)-2020

Course Name – Machine Learning

Course Code - PEC-601C

(Semester VI)

Brainware University

Full Marks: 60 Time: 2:30 Hours [The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]				
1.	Group (Multiple Choice Ty Choose the correct alternative from the followin	rpe Question) 1 x 15=15		
(i)	Like the probabilistic view, the view al membership with each classification	lows us to associate a probability of		
(ii)	a) Exemplarc) ClassicalSelect true statement about Naive Bayes?	b) Deductive d) Inductive		
	 a) Assumes that all the features in a dataset are equally important c) Both Assumes that all the features in a dataset are equally important and Assumes that all the features in a dataset are independent 	b) Assumes that all the features in a dataset are independentd)None of these		
	 A sentence parser typically is applied for a) It is used to parse sentences to check if they are utf-8 compliant. c) It is used to parse sentences to assign POS tags to all tokens. Let us say that we have computed the gradie 	b) It is used to parse sentences to derive their most likely syntax tree structures d) It is used to check if sentences can be parsed into meaningful tokens.		
(14)	vector g. Select the cost of one gradient desc	ent updategiven the gradient?		
(v)	a) O(D)c) O(ND)select the widely used and effective machine bagging	b) O(N) d) O(ND2) e learning algorithm based on the idea of		
(vi)	a) Decision Treec) ClassificationMachine learning is applied to	b) Regressiond) Random Forest		

b) Analysis data

d) None of these

a) Plot data

c) Finding pattern in data

 a) Supervised and Unsupervised ML 	b) Supervised and Norradpervises	
c) Classification and Regression	d) None of these	
(viii) Support Vector machine is observed as a	Al i4hm	
 a) Clustering algorithm 	b) Feature Selection Algorithm	
c) Classification algorithm	d) None of these	
(ix) K-Means is observed as a	Aleithm	
 a) Clustering algorithm 	b) Feature Selection Algorithm	
c) Classification algorithm	d) None of these	
(x) Define Machine learning?	of knowledge	
a) The autonomous acquisition of knowledge	b) The autonomous acquisition of knowledge through the use of manual programs	
through the use of computer programs	d) The selective acquisition of knowledge	
(2) The selective acquisition of knowledge	through the use of manual programs	
through the use of computer programs (xi) Select the correct one based on "Type-1" and	"Type-2" errors? 1. Type1 is known as	
falco pocitivo and Tuno? is known as falco pog	afive 7 IVDELIS KILUWII 03 10.00	
negative and Type2 is known as false positive.	3. Type1 error occurs when we reject a	
null hypothesis when it is actually tr		
a) . Only 1	b) Only 2	
c) Only 3	d) 1 and 3	
(xii) In ensemble learning, you aggregate the predi	ctions for weak learners, so that an	
ensemble of these models will give a better pr	rediction than prediction of individual	
models. Select the true on the basis of the fac	t, weak learners used in ensemble	
model?1. They don't usually overfit.2. They ha	ive high bias, so they cannot solve	
complex learning problems3. They usually ove	rfit.	
a) 1 and 2	b) 1 and 3	
c) 2 and 3	d) Only 1	
(xiii) Select the good test dataset characteristic		
 a) Large enough to yield meaningful results 	b) Is representative of the dataset as a whole	
 c) Both Large enough to yield meaningful 	d)	
resultsand Is representative of the dataset	None of these	
as a whole		
(xiv) A multiple regression model has		
a) Only one independent variable	b) More than one dependent variable	
c) More than one independent variable	d) None of these	
(xv) A nearest neighborhood approach is best appl	ication	
a) for large size data set	b) When irrelevant attributes are removed	
ioi large size data set	from data	
c) When a generalized model of data is	d) When an explanation of what has been	
desirable	found is of primary importance	
_	_	
Grou		
(Short Answer Ty	pe Questions) 3 x 5=15	
2. Explain the limitations of Fixed Basis Function.	(3)	
3. Explain the Naive Bayes classifier.	(3)	
4. Describe the Bayesian Belief Network.	(3)	
5. Describe confusion matrix. Explain it with an example.		
6. Compare between perceptron and other ANN.	(3)	
OR		
Conclude the effectiveness of feed-back ANNs.	(3)	
Group	p-C	

(vii) Supervised machine learning is divided into two groups

	(Long Answer Type Questions)	5 x 6=30
7.	- with a suitable chample.	(5)
8.	Justify that Kernel trick is making SVM a more powerfull method than linear regression	n. (5)
9.	Define precision, recall and F1 Score	(5)
10.	Explain the multiple linear regression with a suitable example.	(5)
	Explain the term instance-based learning. Explain Soft Margin Classification	(5)
l2.	Develop the cost function of univariate linear regression and justify its meaning.	(5)
	OR	
	justify that linear regression is a special case of polynomial regression with degree 1	(5)

LIBRARY
Brainware University
Barasat, Kolkata -700125