

BRAINWARE UNIVERSITY

Programme – B.Tech.(CSE)-AIML-2021/B.Tech.(CSE)-AIML-2022/B.Tech.(CSE)-AIML-Term End Examination 2023-2024 2023/B.Tech.(CSE)-DS-2023

Course Name – Semi-Conductor Physics/Semiconductor Physics

Course Code - BSCM101/BSCD101

(Semester I)

Brainware University Beraset, Kolkate -700125

Full Marks: 60

Time: 2:30 Hours

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group-A

(Multiple Choice Type Question)

1 x 15=15

- Choose the correct alternative from the following:
- (i) Choose which pair of observables of a particle cannot be measured precisely at the same time.
 - a) spin and color

- b) energy and torque
- c) position and momentum
- d) size and speed
- (ii) Identify the correct relation between total energy [E] and temperature [T] in Stefan-Boltzmann law
 - a) $E \propto T^4$

b) $E \propto T^{-4}$

c) $E \propto T$

- d) $E \propto T^{-1}$
- (iii) Which of the following parameter can not be determined from the Hall effect experiment?
 - a) Type of charge carrier

b) Mobility

c) Carrier concentration

- d) Temperature
- (iv) Which of the following functions is the eigenfunction of the operator d/dx.
 - a) sec(x)

b) tan(x)

c) ln(x)

d) $e^{(-x)}$

b)

- (v) Four-point probe method is used to measure

a) Capacitance

- b) Inductance d) Hall coefficient
- c) Resistivity (vi) Identify the total energy operator.

a) $-i\hbar \frac{\partial}{\partial t}$

LIBRARY c) Brainware University $-\hbar \frac{\partial}{\partial t}$ Berasat, Kelkata -700125	$\hbar \frac{\partial}{\partial x}$
	đt
(vii) Addition of pentavalent impurity to an	intrinsic semiconductor creates many
a) Holes c) Valence electrons (viii) What is the primary difference between	b) Free electronsd) Bound electronsintrinsic and extrinsic semiconductors?
 a. Intrinsic semiconductors have a hig electron concentration than extrinsic semiconductors. 	ther b) b. Intrinsic semiconductors are pure semiconducting materials, while extrinsic semiconductors have impurities intentionally added.
c) Extrinsic semiconductors have a crys lattice structure, while intrinsic ssemiconductors do not. (M) With increasing forward bias to a p-n ju	tal d) Intrinsic semiconductors conduct electricity, while extrinsic
a) decreasesc) remains the same(x) The electron mobility in metals is given	b) increasesd) intially increases then decreasesby
a) v_d/E	b) v _d /m
c) v _d /T	d) T/E
(xi) The resistivity of a material depends on	which of the following factors?
a) Length of the conductorc) Temperature(xii) The shape of E-K diagram of the conductor	 b) Area of cross section of the conductor d) Mass of the material stion band and valance band is predicted to
be	
a) horizontal c) circular (xiii) In He-Ne laser neon atoms get energy	b) vertical d) parabolic
a) on collision with He atoms	b) from chemical reactions
c) from electrical pumping(xiv) Population inversion in a laser system ca	d) from optical pumping n be achieved
 a) when one of the excited states is less populated than the ground state c) when the population of one excited state and the ground state are equal (xv) At 0 K temperature, semiconductors are _ 	b) when one of the excited states is more populated than the ground state d) on the basis of none of the above conditions
a) Perfect metals	b) Perfect non-metals
c) Perfect insulator	d) Perfect conductors
G	roup-B
	er Type Questions) 3 x 5=15
2. Determine the de Broglie wavelength of a th	ermal neutron at temperature 600 K? (3)
3. Describe the following terms in the context of and b) relaxation time.	of free electrons in metals: a) drift velocity (3)

4. Explain the origin of negative temperature coefficient of a semiconductor. Brainware University 5. The error in determining the wavelength of a photon of wavelength 400 nm is (3) 0.0001%. Calculate the minimum uncertainty in determining its position. 6. Estimate the normalization frequency of A graded index fiber, that has a core diameter (3) of 50 μm and a numerical anatter (3) of 50 µm and a numerical aperture of 0.22 at a wavelength of 850 nm. Calculate the ratio of population inversion of the two states in thermal equilibrium at $300 \, K$. The wavelength course in the two states is $600 \, K$. 300 K. The wavelength corresponding to the energy gap between the two states is 600 nm (3)Brainware University Craw were writers 700123 Group-C (Long Answer Type Questions) 7. Evaluate the numerical aperture, acceptance angle and critical angle of a fiber having (5) core and cladding refractive indices 1.5 and 1.45 respectively. 8. Explain how a potential difference (Hall voltage) is formed in a direction (5)perpendicular to both applied magnetic field and current. 9. A light of wavelength 3000 Å falls on a metal surface of work-function 2.28 eV. (5)Calculate the maximum speed of the ejected photoelectrons. 10. Write down Schrödinger's equation for a free particle in a one-dimensional potential (5) box. Applying appropriate boundary conditions calculate its eigen energies. 11. Show that the sum of the probability of occupancy of an energy state at ΔE above the (5) Fermi level and that at ΔE below the Fermi level is unity. 12. The conductivity of intrinsic Si is 4.17×10^{-5} and 4×10^{-4} (Ω m)⁻¹ at 0°C and 27°C (5)respectively. Evaluate the bandgap of Si. OR A uniform silver wire has a resistivity of $1.54 \times 10^{-8} \Omega m$ at room temperature. For an (5) electric field along the wire of 1 volt cm⁻¹, compute the average drift velocity of electrons assuming that there is 5.8×10^{28} conduction electrons $/m^3$. Estimate the value of mobility.

Brainware University Barasat, Kolkata -700125

RESIDENCE AND TOTAL