

BRAINWARE UNIVERSITY

Term End Examination 2023-2024
Programme – M.Sc.(MATH)-2022
Course Name – Analytical Number Theory
Course Code - MSCME301C
(Semester III)

Full Marks: 60

Time: 2:30 Hours

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group-A

(Multiple Choice Type Question)

1 x 15=15

- Choose the correct alternative from the following :
- (i) Select the correct option. The Kronecker's Lemma is primarily concerned with which type of numbers?
 - a) Prime numbers

b) Imaginary numbers

c) Rational numbers

- d) Irrational numbers
- (ii) Determine the correct statement about the upper bound of the Riemann Zeta function?
 - a) The Riemann Zeta function is bounded by a constant value.
- b) The Riemann Zeta function is unbounded and grows infinitely as the input increases.
- c) The upper bound of the Riemann Zeta function is unknown.
- d) The Riemann Zeta function is bounded by a logarithmic function.
- (iii) Select the correct option: The Dirichlet series associated with the Riemann zeta function is convergent for:
 - a) Re(s) > 0

b) Re(s) > -1

c) Re(s) > 1

- d) Re(s) > -2
- (iv) Determine the lower bound for the Riemann Zeta function?
 - a) The Riemann Zeta function is always positive, so it has no lower bound
 - c) The lower bound of the Riemann Zeta function is unknown
- (v) Choose the correct statement.
 - a) Dirichlet series are unrelated to arithmetic functions.
 - c) Dirichlet series can be used to define arithmetic functions.
- b) The Riemann Zeta function is bounded below by a constant value.
- d) The Riemann Zeta function is bounded below by a logarithmic function.
- b) Every arithmetic function has a corresponding Dirichlet series.
- d) Arithmetic functions cannot be expressed as Dirichlet series.
- (vi) Conclude the statement that is about Euler products

a) Euler products are only applicable to		 Euler products are derived from infinite geometric series. 	
arithmetic functions. c) Euler products provide an alternative		d) Euler products are limited to fur	ctions with
representation of certain Dirichlet series.		real inputs.	
(vii) Identify the correct option:	In Mellin trans	sformation Dirichlet series should be	
a) Divergent		b) Convergent	
c) Oscillatory		d) None of these	
(viii) Conclude the true statement function d(n)	t for the divisor i	function $\sigma(n)$ and the sum of divisors	
a) $\sigma(n) = d(n) - n$		b) $\sigma(n) = d(n) + n$	
c) $\sigma(n) = 2 * d(n)$	0	d) $\sigma(n) = d(n) * n$	
convergence of the Dirichle	stormation, idei et series	ntify the option which concludes the	
a) Wintner's theorem		b) Kronecker's lemma	
c) Stirling's formula (x) Convolution method can be	e identified as	d) Moebius Function	
 a) Approximating an arithm a simpler arithmetic func 	tion	b) Approximating the partial sum simpler arithmetic function	by a
c) Evaluating an arithmetic partial sum		d) None of these	
(xi) The Euler summation formula		evaluate the sum of the series	
a) The harmonic series (1 + 1,).		b) The alternating series (1 - 1/2 + 1).	/3 - 1/4 +
c) The geometric series (1 + 2 (xii) Identify the correct option.	+ 4 + 8 +). A divisor of an	d) The factorial series (1! + 2! + 3! + integer means	4! +).
a) A positive divisor		b) A negative divisor	
c) A zero divisor (xiii) A negative integer can be de	efined as	d) None of these	
a) a prime		b) not a prime	
c) a composite number (xiv) Every integer >1 can be reco	ognized as	d) coprime	
a) Product of primes		b) Addition of primes	
c) Division of primes		d) None of these	
(xv) The factorization of a prime		defined by	
a) Fundamental Theorem of ac) Division theorem	Arithmetic	b) Fundamental Theorem of Algeb d) None of these	ra
		up-B	
	(Short Answer	Type Questions)	3 x 5=15
 Show that the nth prime pn satis Define prime number with exam 	fies pn ~ n log n ple	as n → ∞.	(3)
4. Evaluate the absolutely convergence of Dirichlet series			(3)
5. Explain disk of convergence and radius of convergence			(3)
6. Predict an application of partial s	ums of the Eulei	r phi function	(3) (3)
	0	ND.	(5)
Evaluate the partial sum of Euler	phi function wit	h proper significance of each symbol.	(3)
		up-C	
	(Long Answer T	ype Questions)	5 x 6=30
7. Compute Chebyshev estimate.			(5)
			•

8. Explain the summation by parts formula.	1-1
9. Evaluate Wintner's mean value theorem.	(5)
10. Evaluate an application of Mallin transferred	(5)
10. Evaluate an application of Mellin transform representation of Dirichlet series. 11. Conclude the Carmichael's conjecture.	(5)
12. Evaluate Moebius identity.	(5)
12. Evaluate Moebius Identity.	(5)
OR	
Justify Stirling's formula.	(5)
	ζ- /

Brain. Library, arsity Baresa.