

BRAINWARE UNIVERSITY

Term End Examination 2023-2024
Programme – M.Sc.(MATH)-2022
Course Name – Dynamical systems
Course Code - MSCME302B
(Semester III)

Erairware Bengal-70125

Full Marks: 60

Time: 2:30 Hours

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group-A

(Multiple Choice Type Question)

1 x 15=15

- 1. Choose the correct alternative from the following:
- (i) Choose the correct option. In a Lyapunov function V(x), a point x* is considered stable if V(x*) is:
 - a) Positive definite

b) Negative definite

c) Non-positive

- d) Non-negative
- (ii) Select the correct option, if $A = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$ then e^A is equal to

$$e^a \begin{pmatrix} a & b \\ b & a \end{pmatrix}$$

b)
$$e^a \begin{pmatrix} 1 & b \\ b & 1 \end{pmatrix}$$

c)
$$e^a \begin{pmatrix} 1 & -b \\ b & 1 \end{pmatrix}$$

d)
$$e^a \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$$

- (iii) If a discrete dynamical system has two fixed points, one attracting and one repelling, recognize the best describes the behaviour of trajectories near these fixed points.
 - a) Trajectories are attracted to the attracting fixed point and repelled from the repelling fixed point
- Trajectories are repelled from both fixed points
- c) Trajectories are attracted to both fixed points
- d) Trajectories do not converge near any fixed point
- (iv) Select the correct option; a function f(x) satisfies the Lipschitz condition on an interval [a, b] if there exists a constant K such that:
 - a) $|f(x)| \le K$ for all $x \in [a, b]$
- b) $|f'(x)| \le K$ for all $x \in [a, b]$
- c) $|f(x) f(y)| \le K|x y|$ for all $x, y \in [a, b]$
- d) $|f''(x)| \le K$ for all $x \in [a, b]$
- (v) Select the primary characteristic behavior exhibited by the Lienard system.
 - a) Stable equilibrium points
- b) Unbounded growth
- c) Exponential growth of trajectories
- d) Chaotic behavior

(vi) Select the critical points of the nonlinear systems $\frac{dx}{dt} = x - xy$, $\frac{dy}{dt} = y - x^2$			
((vi) Select the critical points of the	b) (0.0) (1 ±2)	
10	a) (0,0), (±1,1)	b) (0,0), (1,±2) d) None of these	
	c) $(0,0)$, $(-1,\pm 1)$ wii) Choose the number of linearly independent eigenvalues:	h) n - 1	
h	a) n c) It depends on the size of the matrix (iii) Choose the matrix that will always have at least	d) It depends on the values of the	nvalues
i ".	a) Identity matrix b) Diagonal matrix with all non-zero entries x) Write the correct statements for a positive defin	d) Skew-symmetric matrix nite matrix	
	a) All of its eigenvalues are positive c) All of its eigenvalues are negative x) If a matrix A has eigenvalues {1, 2, 3}, Select the	d) It has only one eigenvalue	
	a) {1, 2, 3} c) {2, 4, 6} d) If a matrix A is invertible, select the correct state	d) {1, 8, 27}	
	a) They are all zero	d) They are all equal to 1	
(x	ii) If a matrix has an eigenvalue of multiplicity 3, 36 independent eigenvectors it can have?	b) 1	
(xi	a) 0 c) 2 iii) Recognize the characteristic of chaotic behaviou	d) 3	
	a) Sensitivity to initial conditions c) Converging orbits iv) Select the correct option for the fixed points of	b) Stable fixed points d) Periodic oscillations	
	a) The map is undefined c) The map remains unchanged after iteration v) Select the equation that represents the fixed po	b) The map is constantd) The map diverges to infinity	
۰,	a) f(x) = x c) f(x) = 0	b) f'(x) = x d) f'(x) = 0	
Group-B			
(Short Answer Type Questions)			3 x 5=15
2. Write the definition of asymptotically stability.			(3)
3. Compute the value of k for which the following matrix is positive definite $\begin{pmatrix} 2 & -4 \\ -4 & k \end{pmatrix}$			(3)
4.	Define orbit of period k.		(3)

5. Show that (0,0) is an unstable critical point of

$$\frac{dx}{dt} = -y + x^3$$

$$\frac{dy}{dt} = x + y^3$$

6. Calculate the characteristic polynomial of $A = \begin{pmatrix} 5 & -2 \\ 4 & -4 \end{pmatrix}$

(3)

(3)

OR

Evaluate all the fixed points of the

$$T(x) = 2x, 0 \le x \le \frac{1}{2}$$
$$= 2(1-x), \frac{1}{2} \le x \le 1$$

Brainware Library Broad Rolls and Brainware Library Broad Rolls and Brainware Library Broad Rolls and Brainware Rolls and Brai

Group-C (Long Answer Type Questions)

5 x 6=30

(5)

7. Defining tent map, identify all fixed points of tent map.

- (5)
- 8. Justify whether each of the following functions is positive definite, negative definite, or neither

$$x^2 - xy - y^2$$

- 9. Discuss if the linear system $\dot{x} = Ax$ has a saddle, node, focus or center at the origin and determine the stability of each node or focus: $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$
- 10. Analyze the stable, unstable and center subspaces of the linear system (5)

$$\dot{x} = A \begin{pmatrix} 2 & 3 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} x$$

- 11. Classify the equilibrium points (as sinks, sources or saddles) of the nonlinear system $\dot{x} = f(x)$ with f(x) given by

$$\begin{pmatrix} x_2 - x_1 \\ kx_1 - x_2 - x_1x_3 \\ x_1x_2 - x_3 \end{pmatrix}$$

(5)

12. Evaluate the derivative of the functions $f(x) = \begin{pmatrix} x_1 + x_1 x_2^2 + x_1 x_3^2 \\ -x_1 + x_2 - x_2 x_3 + x_1 x_2 x_3 \\ x_2 + x_3 - x_1 \end{pmatrix}$ (5)

Consider OR (5) $\dot{x} = x - y - x(x^2 + 5y^2)$ $\dot{y} = x + y - y(x^2 + y^2)$ evaluate the fixed point at the origin.

COMPLETE