BRAINWARE UNIVERSITY Brainware University Brainware University Barasat, Kolkara -700125 Term End Examination 2023-2024 Programme – B.Sc.(ANCS)-Hons-2021 Course Name – Computer Organization and Architecture Course Code - BNCSC303 (Semester III) | Full
[1 | Marks: 60
The figure in the margin indicates full marks. Candown words as far | Time: 2:30 Hours didates are required to give their answers in their as practicable.] | |------------|--|--| | 1. | Grou
(Multiple Choice
Choose the correct alternative from the followin | Type Question) 1 x 15=15 | | (i) | Identify computer architecture. | Jernale traunist of electromycolomic grantals (2003) of | | | a) set of categories and methods that specify the functioning, organisation, and implementation of computer systems c) set of functions and methods that specify the functioning, organisation, and implementation of computer systems Memorize computer organization. | b) set of principles and methods that specify the functioning, organisation, and implementation of computer systems d) None of the mentioned | | | a) structure and behaviour of a computer system as observed by the user | b) structure of a computer system as observed by the developer | | | c) structure and behaviour of a computer system as observed by the developer Locate the subcategories of computer architect | d) All of the mentioned | | a | a) Microarchitecture b) Systems design dentify the advantage of I/O mapped devices to | b) Instruction set architecture d) All of the mentioned | | |) The former offers faster transfer of data | b) The devices connected using I/O mapping have a bigger buffer space | | |) The devices have to deal with fewer address lines tate that in memory-mapped I/O | d) No advantage as such | | a) | The I/O devices and the memory share the same address space | b) The I/O devices have a separate address space | | c)
(vi) | The memory and I/O devices have an associated address space are the different types of generating of | d) A part of the memory is specifically set aside for the I/O operation control signals. | | | Hardwired | b) Micro-instruction | | c) Micro-programmed
(vii) Observe how the fetch and execution cycles | d) Both Micro-programmed and Hardwir | ed | |--|--|------------| | a) Modification in processor architecture c) Special unit (viii) Identify that UNIVAC belongs togener | b) Clock
d) Control unit | | | a) First C) Third | b) Second
d) Fourth | | | a) Throughput c) Predictivity | b) Storage
d) Latency | | | (x) Predict the bit used to indicate whether the a) Reference bit c) Control bit (xi) Identify which among the following is used eliminate data and control hazard. | b) Dirty bit
d) Idol bit | | | Schedule the execution of the instruction only if there is no hazard. | b) Using a special hardware to check for hazard and issue instructions only when possible. | r
nen | | c) Allowing the compiler the move instructions around to fill the LOAD/BRANCH delay slot(s) with meaningful instructions. (xii) Indicate that the system is notified of a read | d) None of the above. | | | a) Appending an extra bit of the address | b) Enabling the read or write bits of the devices | • | | c) Raising an appropriate interrupt signal (xiii) Choose the following circuit to convert the | d) Sending a special signal along the BL | JS | | a) Decoder c) Code converter (xiv) Construct the following memory unit that converted the converted | b) Encoder d) Multiplexer communicates directly with the CPU. | | | a) Auxiliary memory c) Secondary memory (xv) A collection of 8 bits is called a Identi | b) Main memory
d) None of the above | | | a) Byte
c) Word | b) Nibble
d) Record | | | | Group-B
er Type Questions) | 3 x 5=15 | | Define a mainframe computer. Discover the fundamental difference between Von Neumann and Harvard architectures. Define a device driver, and why is it essential for CPU-device communication. Discover pipelining in computer organization. What is EEPROM, and analyse how is it different from traditional ROM? | | | | What is paging, and analyse how does it work | OR
? | (3) | | | Group-C
er Type Questions) | 5 x 6=30 | | 7. Explain two address instruction format with 8. Explain Memory hierarchy | example. | (5)
(5) | - 9. Define RAM and its variations. - 10. Analyse the advantages of pipe lining. - 11. Explain Three address instruction format with example. - 12. Analyse the different phases of Instruction Cycle. OI Analyse at least 5 different addressing modes. (5) (5) (5) (5) LIBRARY Brainware University Barasat, Kolkata -700125