

BRAINWARE UNIVERSITY

Term End Examination 2023-2024 Programme - Dip.EE-2021/Dip.CSE-2022 Course Name - Data Structure and Algorithm/Data Structures Course Code - DEE304/DCSE-PC301 (Semester III)

Time: 2:30 Hours Full Marks: 60 [The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

L x 15=15

c) Selection Sort

structure to sort the elements.

		Group-A	
	(Multiple Choice Type Question)		1
1.	Choose the correct alternative from the following:		
(i)	Identify the data structure that follows the last-in, first-out (LIFO) principle.		
	a) Queue c) Linked list	b) Stack d) Tree	
(ii)	Name the process of finding an element in a data structure.		
/:::\	a) Insertion c) Searching Soloct the term that describes a data s	b) Deletiond) Sortingstructure\'s ability to store multiple elements of	f
(m)	the same type.	manus areb in education to expend a sale races gradit	
	a) Polymorphism	b) Encapsulation	
(iv)	c) Abstraction Name the data structure that represer time insertions and deletions at both	 d) Homogeneity a linear collection of elements with constanends. 	it-
(v)	a) Queue c) Linked list Select the sorting algorithm that is cor builds the final sorted array one item a	b) Stack d) Array nsidered an in-place, stable sorting algorithm th at a time.	hat
(vi)	a) Merge Sort b) Quick Sort c) Bubble Sort d) Selection Sort Trace the sorting algorithm that selects a \"pivot\" element and partitions the array into two subarrays: elements less than the pivot and elements greater than the pivot.		
(vii)	a) Merge Sort c) Bubble Sort Cite the sorting algorithm that has a w efficient for small datasets or mostly so	b) Heap Sort d) Quick Sort orst-case time complexity of O(n^2) but is orted data.	
	a) Merge Sort	b) Quick Sort	

(viii) Identify the sorting algorithm that is based on the idea of maintaining a \"heap\" data

d) Bubble Sort

a) Quick Sort	b) Bubble Sort d) Heap Sort			
c) Merge Sort (ix) Name the data structure that allows elements t	o be accessed directly using an index. b) Queue			
a) Stack c) Linked list c) Linked list	d) Array nt for small datasets or nearly sorted			
data but may perform poorly on large, unsorted datasets. b) Quick Sort				
a) Heap Sort c) Merge Sort (xi) Identify the linear data structure that follows the	d) Rubble Sort			
a) Queue	d) Array			
(xii) Name the fundamental operation that adds an e	lement to the top of a stack.			
a) Push	b) Pop d) Enqueue			
(xiii) Select the abstract data type (ADT) that accurate	b) Set			
a) List c) Stack	d) Dictionary			
(xiv) Choose the operation that removes and returns a) Push	b) Pop			
	d) Enqueue			
(xv) Select the operation that retrieves the number of	f elements in a stack.			
	b) Pop			
c) Size	d) Enqueue			
Group	-В			
(Short Answer Typ		x 5=1		
2. Describe the primary purpose of data structures in a		(3) (3)		
 Explain how binary search narrows down the search space with each comparison. Classify binary trees as a type of hierarchical data structure. 				
OR				
balancing.	ree and an AVL tree in terms of	(3)		
Group				
(Long Answer Type	2 Questions) 5	x 6=3		
Define a linked list and compare it to an array in ter sizing. Explain the advantages of using a singly linker	ms of memory allocation and dynamic ed list over an array.	(5)		
Describe the structure of a singly linked list and its deletions are performed in a singly linked list.	nodes. Explain how insertions and	(5)		
 Describe the process of linear search and illustrate scenarios where linear search is an appropriate cho 	pice.	(5)		
O. Analyze the key principles behind the bubble sort a large datasets. How does it differ from quicksort?		(5)		
Classify sorting algorithms into comparison-based a Explain the fundamental differences between these	two categories	(5)		
Consider a scenario where external sorting is necessary due to limited memory resources. (5 Decide on the most appropriate nonlinear data structure for sorting large datasets efficiently in an external memory environment.				

of a hinary search tree and an AVL tree in terms of	(5)
Compare and contrast the performance of a binary search tree and an AVL tree in terms of insertion, deletion, and searching operations. Consider scenarios where one may be	
preferred over the other.	
