

BRAINWARE UNIVERSITY

Term End Examination 2023
Programme – M.Sc.(MATH)-2021
Course Name – Operations Research
Course Code - MSCMC401
(Semester IV)

Full Marks : 60 Time : 2:30 Hours

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group-A

(Multiple Choice Type Question)

1 x 15=15

Choose the correct alternative from the following :

- (i) Write the minimum number of lines covering all zeroes in a reduced cost matrix of order
 - a) at the most n

b) at the least n

c) n-1

- d) n 1
- (ii) Illustrate the purpose of a dummy row or column in an Assignment Problem is to
 - a) obtain balance among all the activities and all the resources
- b) prevent a solution from degenerate
- c) provide an unbalanced problem
- d) obtain multiple optimum solutions.
- (iii) An assignment problem can be solved by
 - a) Simplex method

- b) Transportation Problem
- c) Branch & Bound method
- d) All of these

(iv) Consider the LP

Maximize 9X1+3X2

subject to 4X1 + X2 ≤ 12

 $2X_1 + 4X_2 \le 22$

X1, X2 ≥0.

Estimate the primal using the graphical method. Is a dual solution $Y_1 = 15/7$, $Y_2 = 3/14$ optimum?

- a) It is not optimum to the dual because it is not feasible to the dual
- b) The dual solution is feasible but not optimum because the objective function

value is different from that of the primal

- c) It is optimum using the optimality criterion theorem
- d) Weak duality theorem is violated.

(v) The graphical approach to an LPP is useful b	becauseselect the correct one
 a) it provides general way to solve linear programming problems 	b) it does not provide unbounded solution
c) it gives geometric insight into the given LPP and the meaning of optimality (vi) An iso-profit line defined as	d) none of these
a) an infinite number of solutions all of which yield same profit	b) an infinite number of optimum solutions
 c) An infinite number of solutions all of which yield the same cost. 	d) a boundary line of the feasible region.
(vii) While solving a LPP graphically, the region	bounded by the constraints is defined as
a) feasible region	b) infeasible region
c) unbounded solution (viii) Consider the LP	d) solution space and feasible region
Maximize $2X_1 + 3X_2 + 4X_3 + X_4$ subject to $X_1 + 2X_2 + 5X_3 + X_4 \le 12$. $X_j \ge 0$.	
Solve the dual and find the optimum so Select the correct option.	olution to the primal.
a) A single constrained LP can have more than one variable taking non zero value at the optimum	b) The variable with the largest coefficient in the objective function is the only variable with a non-zero value in the optimum solution.
c) The variable with the smallest coefficient in the constraint is the only variable with a non-zero value in the optimum solution.	d) The variable with the largest ratio of the objective function coefficient to constraint coefficient is the only variable with a non-zero value in the optimum solution.
Consider the LP	
Maximize $2X_1 + 3X_2 + 4X_3 + X_4$ (ix) subject to $X_1 + 2X_2 + 5X_3 + X_4 \le 12$.	
$Xj \ge 0$. Only 11 units of the resource is available function at optimum is	e. Calculate the value of the objective
a) 18	b) 20
c) 22	d) 24
(x) At any iteration of the usual simplex method basic	of maximization LPP, if there is at least one
variable in the basis at zero level and all z_j – correct one.	$c_j \ge 0$, the current solution isselect the
a) Infeasible	b) unbounded
c) non-degenerate (xi) Consider the LP problem:	d) degenerate
Maximize $5X_1 + 12X_2$ subject to $2X_1 + 5X_2 \le 13$ $7X_1 + 11X_2 \le 31$	
$X_1, X_2 \ge 0$. Solve this problem using Simpley Deduce the objective function value after first	x algorithm and answer the following: st iteration.
a) 28.8	b) 20.0
.) 24.2	b) 30.0
4) JI.E	d) 32.2

,, p	oint of intersec	tion of pure	strategies	in a gan	ne is distinguished as	
a) Valı	int of intersection of pure strategies in a game is distinguished as e of the game b) Saddle point					
c) Mix	ed strategy				otimal strategy	
(xiii) In gan	ne theory, a ch	oice that is	optimal for	a firm r	no matter what its compe	titors do is
a) the	dominant strat	egy.		b) the	game-winning choice.	
c) supe	er optimal.			d) a s	zonzo selection.	
(xiv) In gan illustra	ne theory, a sit ated a	uation in w	nich one fir	rm can g	ain only what another fir	m loses is
a) non:	zero-sum gam	e.		b) pri	isoners' dilemma.	
c) zero	-sum game.			d) car	rtel temptation.	
(xv) If the	primal (maxim	ization) is u	nbounded	then dis	tinguish the correspond	ing dual is
a) bour					bounded	
c) infe	asible			d) no	ne of these	
			45.12	144		
		/cı		oup-B	actions)	3 x 5=1
		(Sr	ort Answer	Type Qu	estions)	3 x 3-1.
2. Identify	the following	game is str	ictly deterr	ninable a	and fair.	(3)
			Play			
Player	· A		В		B_2	
-		A_1	5	-	0	
		A_2	0)	2	
year, eva	the following	per of order		i the cos	t of one shortage is Rs. 1	(3)
(i) Basic	solution					
(ii) Doci	e feasible solut	ion				
(II) Dasic						
5. Write th	e initial B.F.S	of the trans	portation p	roblem b	y North West	(3)
5. Write th	e initial B.F.S nethod also fin	d the cost				(3)
5. Write th	nethod also fin	d the cost D1 D2	2 D3	D4	Availability	(3)
5. Write th	O1	D1 D2 5 3	2 D3 6	D4 2	Availability 19	(3)
5. Write th	O1 O2	D1 D2 5 3 4 7	D3 6 9	D4 2 1	Availability 19 37	(3)
5. Write th	O1 O2 O3	D1 D2 5 3 4 7 3 7	2 D3 6 9	D4 2 1 5	Availability 19	(3)
5. Write th	O1 O2	D1 D2 5 3 4 7	2 D3 6 9	D4 2 1	Availability 19 37	(3)
5. Write th	O1 O2 O3	D1 D2 5 3 4 7 3 7	2 D3 6 9	D4 2 1 5	Availability 19 37	(3)
5. Write the corner m	O1 O2 O3	d the cost D1 D2 5 3 4 7 3 7 16 18	D3 6 9 4 31	D4 2 1 5	Availability 19 37	
5. Write the corner m	O1 O2 O3 Demand	d the cost D1 D2 5 3 4 7 3 7 16 18	D3 6 9 4 31	D4 2 1 5	Availability 19 37	(3)
5. Write the corner m	O1 O2 O3 Demand	d the cost D1 D2 5 3 4 7 3 7 16 18	2 D3 6 9 4 31	D4 2 1 5 25	Availability 19 37	
5. Write the corner m	O1 O2 O3 Demand	D1 D2 5 3 4 7 3 7 16 18	2 D3 6 9 4 31	D4 2 1 5 25 DR	Availability 19 37 34	

7. For the game with pay off matrix:

	,	-	
	ı	5	
	١	-	1

	Player	В
Player A	B1	B2
A1	1	-3
A2	3	5
A3	-1	6
A4	4	1
A 5	2	2
A6	-5	0

Identify the Optimal strategies for player A and B using graphical method. Also identify the values of the game.

8. Evaluate the following Transportation problem.

(5)

Turbure are real		To		
From	Α	В	C	Availability
I	6	9	4	14
II	4	9	8	12
III	1	2	6	5
Requirement	6	10	15	

9. Justify what is meant by linear programming problem.

(5)

10. A maintenance service facility has Poisson arrival rates, negative exponential service times, and operates on a FCFS queue discipline. Breakdowns occur on an average of three per day with a range of zero to eight. The maintenance crew can service on an average six machines per day with a range from zero to seven. Then estimate mean number in the system in breakdown or repair.

11. Determine the optimum basic feasible solution to the following

transportation problem:

	A	В	C	Available
I	50	30	220	1
II	90	45	170	3
III	250	200	50	4
Required	4	2	2	

(5)

12. Reframe the following LPP to its standard form.

$$Max\ z = x_1 - 3x_2$$

Subject to the constraints

$$-x_1 + 2x_2 \le 15$$
$$x_1 + 3x_2 = 10$$

 x_1 and x_2 are unrestricted in sign.

OR

(5)

(5)

Evaluate the following LPP into the form where all the constraints are of equality type.

$$Max z = 2x_1 + x_2 - 6x_3 - 4x_4$$

Subject to the constraints

$$3x_1 + x_4 \le 25$$

$$x_1 + x_2 + x_3 + x_4 = 20$$

$$4x_1 + 6x_3 \ge 5$$

$$2 \le x_1 + 3x_3 + 2x_4 \le 30$$

$$x_j \ge 0$$
(j=1,2,3,4)
