

BRAINWARE UNIVERSITY

Term End Examination 2023
Programme – B.Tech.(ECE)-2019
Course Name – Analog Circuits
Course Code - PCC-EC402
(Semester IV)

LIBRARY
Brainware University
Barasat, Kolkala -780125

Full Marks: 60

Time: 2:30 Hours

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group-A

(Multiple Choice Type Question)

1 x 15=15

- 1. Choose the correct alternative from the following:
- (i) If the positive terminal of the battery is connected to the anode of the diode, then it is known as
 - a) Forward biased

b) Reverse biased

c) Equilibrium

- d) Schottky barrier
- (ii) When a forward bias is applied to a diode, the electrons enter to which region of the diode?
 - a) P-region

b) N-region

c) P-n junction

- d) Metal side
- (iii) The current in the diode is contributed by
 - a) majority carriers only

- b) minority carriers only
- c) both majority and minority carriers
- d) none of these
- (iv) Which of the following is true about the resistance of a Zener diode?
 - a) It has an incremental resistance
- b) It has dynamic resistance
- c) The value of the resistance is the inverse of the slope of the i-v characteristics of the Zener diode
- All of these
- (v) Which of the following can be used in series with a Zener diode so that combination has almost zero temperature coefficient?
 - a) Diode

b) Resistor

c) Transistor

- d) MOSFET
- (vi) In Zener diode, for currents greater than the knee current, the V-I curve is almost
 - a) Almost a straight line parallel to y-axis
- b) Almost a straight line parallel to x-axis
- c) Equally inclined to both the axes with a positive slope
- d) Equally inclined to both the axes with a negative slope
- (vii) With both bases grounded, the only offset that produces an error is the

	a) Innut offeat current	b) Input bias current	
	a) Input offset current c) Input offset voltage	d\ Reta	
(viii) What usually controls the open-loop cutoff fr	requency of an op amp?	
	a) Stray-wiring capacitance		
	· · · · · · · · · · · · · · · · · · ·		
(ix)	c) Collector-base capacitance What will be the voltage drop across the soul	rce resistance of differential amplimen	
	when connected in open loop configuration?		
	a) Zero	b) Infinity	
	c) One	d) Greater than one	
(x)	Determine the output voltage for the non-in-	verting amplifier input voltage 37 prepr	
	sinewave. Assume that the output is a 741.		
	a) -7.44 Vpp sinewave	b) 74 Vpp sinewave	
	c) 7.4Vpp sinewave	d) 0.7 Vpp sinewave	
(xi)	What happen if any positive input signal is a	oplied to open-loop configurations	
\$510#s	a) Output reaches saturation level	b) Output voltage swing's peak to peak d) Output will be a non-sinusoidal wave	form
	c) Output will be a sine waveform	d) Output will be a non-sinusoidal state	
(xii)	Which of the following is a combination of in	verting and non-inverting amplification	nns
	a) Differential amplifier with one op-amp	b) Differential amplifier with two op-an	nps
	c) Differential amplifier with three op-amps	d) Differential amplifier with four op-ar	
(xiii) Compute the output voltage if the input volt	age is reduced to zero in differential.	
	amplifier with one op-amp?	the imput voltage	
	a) Inverted Voltage	b) Same as the input voltaged) Cannot be determined	
	c) Amplified inverted voltage	a) Cannot be determined	
(XIV) Which of the following is a method to mode		
	a) Iteration method	b) Graphical method d) All of these	
	c) Constant-voltage drop model		
(xv)	How many junctions does a diode consist of		
	a) 0	b) 1 d) 3	
	c) 2	u) 3	
		roup-B	
	(Short Answer Type Questions)		
	(Sile) training		
	raw the necessary circuit diagram and expres	s the expression of voltage gain from an	(3)
2. D	PAMP being used as a non-inverting amplifie		
2.0	raw the circuit diagram of a differential ampli	fier using an OPAMP and express an	(3)
-	unrecsion for the output voltage.		
A What is the claw rate? Explain virtual ground concept of an Op-Amp.			(3)
5. Similation the operation of a phase-shift oscillator with the neip of a circuit diagram.			(3)
5. L	evelop the theory of action of an OPAMP as a	an integrator. Draw the circuit diagram of a	(3)
	ractical integrator.		
		OR	
E	plain the use of an OPAMP as a non- invertir	ng amplifier.	(3)
		roup-C	
	(Long Answe	r Type Questions)	5 x 6=30
	Explain Hartly oscillator and derive the equat	ion for oscillation?	(5)
/. t	CONAND and explain the Characteristics of ideal Obakan		
8. I	to the an virtual ground		
9. \	Explain the use of an OPAMP as a summing a	mplifier.	(5) (5)
10. 1	Explain the add of the		(5)

11. Develop the use of an OPAMP as a differential amplifier.

(5)

12. Explain the action of Zener diodes, illustrating both avalanche breakdown and Zener break (5) down.

OR

With respect to CB output characteristics of a transistor, explain the active, saturation and (5) the cut-off region

Brainware University
Barasat, Koikate -760125