

BRAINWARE UNIVERSITY

Term End Examination 2023-2024 Programme - B.Tech.(EE)]-2021 Course Name - Digital Signal Processing **Course Code - OE-EE601A** (Semester VI)

Full Marks: 60

c) Both

time domain a) Multiplication

a) 1

(vii) Identify the Z-transform of a unit impulse function

Ft	ill Marks : 60		Time: 2:30 Hours
	[The figure in the margin indicates full marks. Can own words as far		answers in their
	Grou	р-А	
1.	(Multiple Choice ⁻ Choose the correct alternative from the followin		1 x 15=15

(i) In practical terms, indicate an example of a syst	em that generates discrete time s	signals.
(ii	a) Analog clockc) Incandescent light bulb) Examine the characteristics of a discrete-time service.	b) Digital audio recorderd) FM radio transmitterequence with a periodic behavior	;
	a) Identify the sampling ratec) Calculate the Fourier transform) Explain the role of difference equations in descr	b) Determine the periodicity d) Assess the amplitude variation	ons
	a) By converting continuous signals into discrete signalsc) By analyzing analog circuit behaviorExplain the primary purpose of sampling in the	b) By providing a mathematical discrete-time systemsd) By predicting random proces	framework for
(v)	a) To generate signals c) To filter signals	b) To compress signalsd) To transport signals over long	g distances se
(vi)	a) Butterworth filter design c) Parks-McClellan algorithm Explain for an energy signal	b) Chebyshev filter design d) Elliptic filter design	µ 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3
	a) E=0	b) P=0	

Page 1 of 3

(viii) Choose the mathematical operation in the Z-domain is equivalent to convolution in the

b) P=0

b) z d) e^(-s)

b) Addition

d) Neither 1 not 2

(ix	 c) Differentiation Simulate a digital low-pass filter with a cutoff free Butterworth approximation and a sampling free 	equency of 1000 Hz using the uency of 8000 Hz.	
(x)	 a) Determine the filter order required. c) Implement the filter in code. The system represented by h(n)=0.99>n< u(n 2). 	 b) Design the filter coefficients. d) Evaluate the filter's frequency responsible to the filter condition 	se.
	 a) unstable because it is an FIR system c) unstable because it does not obey BIBO stability criterion Write from the following is NOT a property of the 	d) stable because it is obey BIBO stability criterion	<i>!</i>
	a) Linearity c) Circular convolution property	b) Time-domain aliasing d) Time-shift property	
	a) The frequency at which the magnitude response drops to zero.c) The highest frequency component that can		ponse
(xiii)	Identify parameter is NOT typically used to chara	acterize a digital filter.	
(xiv)	c) Phase distortion	d) Gain	
	a) Step c) Exponential	b) Ramp d) All of these	
	a) time invariant	b) time variant d) cannot be defined	
	· · · · · · · · · · · · · · · · · · ·		3 x 5=15
3. Pre 4. Co 5. Exp 6. Co	edict the advantages of using DFT over Fourier Tr mpare the Sampling Theorem and the Nyquist R plain the order of a digital filter that affect its pe mpare the Chebyshev filter to the Butterworth f OR	ransform (FT). ate, highlighting their key differences. rformance? ilter.	(3) (3) (3) (3) (3)
a) Linearity (b) Time-domain aliasing (c) Circular convolution property (d) Time-shift property (d) The frequency at which the phase response does not prevent without aliasing. (d) The frequency at which the phase response does nonlinear. (d) The frequency at which the phase response does nonlinear. (d) The frequency at which the phase response does nonlinear. (d) The frequency at which the phase response does nonlinear. (d) The frequency at which the phase response does nonlinear. (d) Gain			
		nd the discrete-time Fourier transform	(5)
3. De	escribe the process of calculating power spectra applications.		
to	illustrate the process.		e (5)
{2,	5,11,17,13,12}. If the impulse response of the s	It x(n), the response is y(n)= System is h(n)= {2,1,3}. Calculate input	(5)
1. Eva	aluate IDFT of the DFT sequence X(k)={1,0,1,0}		(5)

12. Estimate Butterworth and Chebyshev filters advantages and disadvantages,	(5)
OR	()
Explain the significance of the design parameters in digital filter design. Discuss how variations in these parameters affect the characteristics of the resulting filter	(5)
