BRAINWARE UNIVERSITY Term End Examination 2023-2024 Programme – B.Tech.(ME)-2021 Course Name – Operations Research Course Code - PEC-ME602C (Semester VI) Full Marks : 60 Time : 2:30 Hours [The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.] ## Group-A (Multiple Choice Type Question) 1 x 15=15 - Choose the correct alternative from the following : - (i) Identify the name of the first country to use Operations Research method to solve problems. - a) India b) China c) U.K. - d) U.S.A. - (ii) Indicate from the following that is not associated with an LPP. - a) Proportionality b) Uncertainty c) Additivity - d) Divisibility - (iii) Identify the right option to satisfy, "Non-negativity condition is an important component of LPP" - a) variables are inter-related in terms of limited resources - b) value of variables make sense and correspond to real world problems - c) value of variables should remain under the control of decision-maker - d) none of these - (iv) A feasible solution of an LPP is classified as - a) must be a corner point of the feasible region - c) must satisfy all the constraints of the LPP simultaneously - b) must optimize the value of the objective function - d) need not satisfy all the constraints, only some of them. - (v) Identify the constrain that does not affect the feasible region is a - a) non-negativity constraint b) slack constraint c) redundant constraint - d) standard constraint - (vi) In a minimization problem, a positive improvement index in a cell interprets that - a) the solution is optimal - b) the total cost will increase if units are reallocated to that cell - c) the total cost will decrease if units are reallocated to that cell - d) there is degeneracy | (vii) In case the cost elements of one or two cells a | re not given in the problem, it interprets. | |---|--| | a) The given problem is wrong c) Allocate very high cost element to those cells (viii) The opportunity cost of a row in a transportati | b) We can allocate zeros to those cells d) To assume that the route connected by those cells are not available | | (viii) The opportunity cost of a row in a transportation | b) Adding the smallest element in the row to | | a) Deducting the smallest element in the row from all other elements of the row c) Deducting the smallest element in the row from the next highest element of the row (ix) In transportation model, the opportunity cost in the row in the row of the row | all other elements of the row d) Deducting the smallest element in the row from the highest element in that row. | | a) Implied cost + Actual cost of the cell c) Implied cost – Actual cost of the cell (x) The Transportation problem developed for the | b) Actual cost of the cell – Implied costd) Implied cost × Actual cost of the cell | | a) a single product from several sources to a destinations c) a single product from several sources to several destinations (xi) Identify the number of variables have in the for | b) a multi-product from several sources to a several destinationsd) a single product from a source to several destinations. | | a) 20 | b) 25 | | c) 30 | d) 35 | | (xii) The total opportunity cost matrix is observed b | y doing: | | a) Row operation on row opportunity cost matrix | b) Column operation on row opportunity cost matrix | | c) Column operation on column opportunity cost matrix | d) None of these | | (xiii) Identify the similarity in between Assignment P | roblem and Transportation Problem | | a) Both are rectangular matrices both can be solved by graphical method | b) Both are square matricesd) Both have objective function and non- | | (xiv) When there are more than one servers, custom one queue to another is named as | negativity constraints
er behaviour in which he moves from | | a) balking | b) jockeying | | c) reneging | d) alternating | | (xv) As per queue discipline identify the following is | not a negative behavior of a customer: | | a) Balking | b) Reneging | | c) Boarding | d) Collusion | | Grou | p-B | | (Short Answer Ty | rpe Questions) 3 x 5=15 | | | | | 2. Define Order Cycle. | (3) | | | | | Identify the value of ¹/₁, of the game with the fi
strictly determinable. | ollowing payoff matrix so that the game is (3) | | В | | | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | | | | | В | | |--------------|----|---|----| | | 2 | 6 | 2 | | A | -1 | 2 | -7 | | ă
A justi | -2 | 4 | 2 | Write the initial B.F.S of the transportation problem by North West corner method also find the cost | | D1 | D2 | D3 | D4 | Availability | |--------|----|----|----|----|--------------| | 01 | 12 | 1 | 3 | 4 | 30 | | O2 | 3 | 12 | 1 | 4 | 50 | | O3 | 15 | 2 | 3 | 8 | 20 | | Demand | 20 | 40 | 30 | 10 | | 5. Calculate the minimum cost corresponding to the 4 x 4 assignment problem: | | | | COSt COME | |----|----|----|-----------| | 8 | 26 | 17 | 11 | | 13 | 28 | 4 | 26 | | 38 | 19 | 18 | 15 | | 19 | 26 | 24 | 10 | 6. Illustrate the L.P.P in standard maximization form: Max $$z = 3x_1+4x_2+7x_3$$ Subject to $2x_1+x_2+7x_3 \le 50$ $x_1+9x_2-5x_3 \ge 60$ $5x_1+3x_3 = 100$ $3x_2+4x_3 \le 80$ for $x_1, x_2, x_3 \ge 0$ OR Using Graphical method, evaluate that the following L.P.P $Max z = 4x_1 + 3x_2$ Subject to the constraints, $$2x_1 + x_2 \le 1000$$ $$x_1 + x_2 \le 800$$ $$x_1 \le 400$$ $$x_2 \le 700$$ $$x_1, x_2 \ge 0$$ Group-C (Long Answer Type Questions) 5 x 6=30 (5) (3) (3) (3) Evaluate the following Transportation problem. | | | To | | | |-------------|---|----|----|--------------| | From | Α | В | С | Availability | | I | 6 | 9 | 4 | 14 | | II | 4 | 9 | 8 | 12 | | III | 1 | 2 | 6 | 5 | | Requirement | 6 | 10 | 15 | | 8. Define deterministic E.O.Q model, with uniform demand, infinite rate of production and having no (5) shortage. 9. Determine the optimum basic feasible solution to the following transportation problem: | | A | B | C | Available | |----------|-----|-----|-----|-----------| | I | 50 | 30 | 220 | 1 | | II | 90 | 45 | 170 | 3 | | III | 250 | 200 | 50 | 4 | | Required | 4 | 2 | 2 | | 10. Explain the concept of queue discipline. (5) (5) 11. Apply simplex methods to estimate the optimal solution of the following L.P.P (5) $Max z = 3x_1 + x_2 + 3x_3$ Subject to the constraint $2x_1+x_2+x_3 \le 2$ $x_1+2x_2+3x_3 \le 5$ $2x_1+2x_2+x_3 \le 6$ for $x_1, x_2, x_3 \ge 0$ The Head of the department has five jobs A, B, C, D, E and five sub-ordinates V, W, X, Y, (5) and Z. The number of hours each sub-ordinate would take to perform each job is as follows: | | V | W | X | Y | Z | |-------------|----|----|----|----|----| | A | 3 | 5 | 10 | 15 | 8 | | B | 4 | 7 | 15 | 18 | 8 | | A
B
C | 8 | 12 | 20 | 20 | 12 | | D
E | 5 | 5 | 8 | 10 | 6 | | E | 10 | 10 | 15 | 25 | 10 | Predict how would the jobs be allocated to minimize the total time? OR Four persons A, B, C and D are to be assigned four jobs I, II, III and IV. The cost matrix is (5) given below. Deduce the proper assignment | Man/
Jobs | A | В | C | D | |--------------|----|----|----|----| | I | 18 | 26 | 17 | 11 | | II . | 13 | 28 | 14 | 26 | | Ш | 38 | 19 | 18 | 15 | | IV | 19 | 26 | 24 | 10 |