

BRAINWARE UNIVERSITY

Term End Examination 2023-2024
Programme – M.Sc.(MATH)-2023
Course Name – General Topology
Course Code - MSCMC205
(Semester II)

Full Marks : 60 Time : 2:30 Hours

[The figure in the margin indicates full marks. Candidates are required to give their answers in their own words as far as practicable.]

Group-A

(Multiple Choice Type Question)

1 x 15=15

Choose the correct alternative from the following :

(i)	Let $X = \{a, b, c, d\}$. Then select the collections of subsets that is a topological		
	structure on X .		
	a) $\{\phi_{.}X_{.}\{a,b\},\{c\}\}$	b) $\{\phi, X, \{a, b\}, \{b, c\}\}$	
	c) $\{\phi, X, \{a, b\}, \{c, d\}\}$	d) $\{\phi, X, \{a, b\}, \{c\}, \{d\}\}$	
(ii)	Select the interval from the followings that generates lower limit topology		
	a) (a, b) c) (a, b]	b) [a, b) d) [a, b]	
(iii)	Let (X, τ) be a topological space. Then so respectively.	elect the values of ϕ^o and $ extit{ extit{X}}^o$	
	a) $ imes$ and ϕ	b) ϕ and $oldsymbol{\mathcal{X}}$	

(iv) Identify the correct option. Under indiscrete topology on $\mathbb R$, the set of natural numbers is

a) Open

b) Both open and closed

c) Closed

c) X and X

d) None of these

(v) Identify the Closure set of the set RQ of all irrational number is

a) Q

b) R

c) RQ

d) Empty set

d) ϕ and ϕ

(vi) Select the correct option. Every finite subset of a metric space X is

a) open

b) closed

c) both open and closed

d) neither open nor closed

a	dentify the boundary of (0,1)) (0, 1) $\{0\}$ Choose the correct option: Let $X = \{a,b,c\}$	b) $\{0,1\}$ d) $\{1\}$ and $T = \{\phi, X, \{a\}, \{b\}, \{a,b\}\}$. The	n T is	
a) c)) the indiscrete topology on X) a non-Hausdorff topology on X Choose the correct option: the diameter o	b) the discrete topology on Xd) a Hausdorff topology on X		
c)	Sup $\{d(x,y) (x,y) \in A\}$ Max $\{d(x,y) (x,y) \in A\}$ hoose the correct option: A discrete topolog	b) $Inf\{d(x,y) (x,y) \in A\}$ d) None of these ical space with at least 2 points is		
c)	Disconnected Compact elect the correct option: A regular T ₁ space is	b) Bounded d) None of these always-		
c)	T_1 but not T_2 may not be T_1 or T_2 elect the correct option: A metric space is	b) T ₂ but not T ₁ d) both T ₁ and T ₂		
c)	T ₁ but not normal both T ₁ and normal	b) normal but not T ₁ d) neither normal nor T ₁		
	elect the correct option: Suppose $f: X \longrightarrow Y$ is connected, then Y is	continuous and onto then, if X is path-		
c)) path connected) connected elect the correct option: Every finite T ₁ space i	b) compact d) None of these s a		
c)) indiscrete space) No such space exists elect the correct option: Urysohn lemma appli	b) discrete space d) Depends on the structure cable on the		
	compact space normal space	b) connected spaced) regular space		
Group-B (Short Answer Type Questions) 3 x 5=15				
2. Examine, whether the union $T_1 \cup T_2$ of two topologies on a set X is a topology on X or not.			(3)	
3. Desc	cribe the pasting lemma.		(3)	
4. Write all the open sets in a discrete metric space.			(3)	

5.	Analyze that $\{x \in \mathbb{Q}: -1 < x < 1\}$ is open in \mathbb{Q} but not closed in \mathbb{Q} .	(3)
6.	Justify by an example that a first countable space may be neither separable nor Lindeloff.	(3)
	Justify that a metric space (X, d) is 1^{st} countable.	(3)
	Group-C	
	(Long Answer Type Questions)	5 x 6=30
7.	Let $f:(X,\tau)\to (Y,\sigma)$ be a map. Then show that f is continuous if and only if for each $x\in X$ and any neighbourhood W of $f(x)$ in Y , there exists a neighbourhood V of x such that $f(V)\subset W$.	(5)
8.	Illustrate that compactness is a topological property.	(5)
9.	Let $f: A \to B$ and $g: C \to D$ be continuous functions. Define a map $f \times g: A \times C \to B \times D$ by the equation $(f \times g)(a,c) = f(a) \times g(c)$. Deduce that $f \times g$ is continuous.	(5)
10	For a subset A of a space X, examine that $\overline{A} = A \cup A'$.	(5)
11	Justify that separability is a topological property.	(5)
12	2. Justify that a closed subspace of a normal space is normal.	(5)
	OR Justify that a compact Hausdorff space is normal.	(5)