BRAINWARE UNIVERSITY # Term End Examination 2023-2024 Programme – B.Tech.(CSE)-DS-2022/B.Tech.(CSE)-2023 Course Name – Semi-Conductor Physics/Semiconductor Physics Course Code - BSCD201/BSCG201 (Semester II) | Full Marks : 60 | Time : 2:30 Hour | | | | | |--|--|--|--|--|--| | | . Candidates are required to give their answers in their own | | | | | | words | as far as practicable.] | | | | | | | Group-A | | | | | | (Multiple | Choice Type Question) 1 x 15=15 | | | | | | Choose the correct alternative from the form | [2] [1] [1] [1] [2] [2] [2] [2] [2] [2] [2] [3] [4] [4] [4] [4] [4] [4] [4] [4] [4] [4 | | | | | | (i) Identify the correct relation between total energy $[E]$ and temperature $[T]$ in Stefan-Boltzmann law | | | | | | | a) $E \propto T^4$ | b) $E \propto T^{-4}$ | | | | | | c) <i>E</i> ∝ <i>T</i> | d) $E \propto T^{-1}$ | | | | | | (ii) In Relativistic case, as the velocity of predicted kinetic energy will approach | the particle approaches the speed of light, the | | | | | | a) zero | b) kinetic Energy as in Non-Relativistic case | | | | | | c) | d) infinite | | | | | | rest energy | | | | | | | (iii) As a radiator, the black body emits the | As a radiator, the black body emits thermal radiation | | | | | | a) at a constant single wavelengthc) at all wavelengths | b) at the maximum wavelength d) none of the above | | | | | | (iv) For the function $e^{\beta^2 x}$, evaluate the e | For the function $e^{\beta^2 x}$, evaluate the eigen value of the operator $\frac{d^2}{dx^2}$ | | | | | | а) в | b) β ² | | | | | | c) g ³ | d) g4 | | | | | | (v) What is the correct form of Wiedemann-Franz law? | | | | | | | • | c) | d)
σ | Ť | | |------|--|------------------------------|--|----------| | | $\frac{\sigma_{\overline{t}}}{\sigma} = \frac{L}{\overline{t}}$ | σ_{τ} | T T | | | (vi) | Determine the type of a material if its band gap | is more | e than 5 eV. | | | 1 | a) Superconductor c) Semiconductor Quantum free electron theory was developed by | d) Con | nductor | | | i | a) Drude c) Lorentz Addition of pentavalent impurity to an intrinsic | b) Son | nmerfeld
I | | | 4 | Holes Valence electrons With increasing forward bias to a p-n junction, | b) Freed) Bou | e electrons
und electrons
Ith of depletion layer | | | | a) decreases c) remains the same The leakage current across a p-n junction is du | | ally increases then decreases | | | | a) Junction capacitance c) Ions In a ruby laser, population inversion is achieve | d) Min | ority carriers nority carriers | | | | a) optical pumping c) chemical reaction What is the wavelength of output of the He-Ne | b) ine
d) app | lastic atom-atom collision
olying strong electric field | | | | a) 632.8 nm c) 532.8 nm Which of the following parameter can not be of experiment? | b) 600
d) 500
determin | 0 nm | | | | a) Type of charge carrier c) Carrier concentration Merit of four-point probe method of determining | | mperature | | | | a) it gives the resistivity at a localized region of the sample | b) it i | njects excess minority carriers | | | | c) it needs very small current | san | rives the average resistivity of the nple | | | (xv) | For a graded index optical fiber, the refractive | | | | | | a) gradually increases c) increases by step | | dually decreases creases by step | | | | Grou
(Short Answer T | up-B
Type Que | estions) | 3 x 5=15 | | 2. [| Distinguish between direct and indirect band gap ser | micondu | ctors | (3) | | 3. (| Calculate the numerical aperture and acceptance efractive indices of the core and the cladding re | e angle o | of a given optical fibre if the e 1.562 and 1.497, respectively. | (3) | - The maximum uncertainty in the position of an electron in a nucleus is 2×10⁻¹⁴ m. Calculate the minimum uncertainty in its momentum. - Describe the following terms in the context of free electrons in metals: a) drift velocity and b) relaxation time. - 6. An intrinsic germanium crystal has a hole density of 10¹⁹ m⁻³ at room temperature. When doped with antimony, the hole density decreases to 10¹⁷ m⁻³ at the same temperature. Calculate the majority carrier density. ### OR Estimate the diffusion co-efficient of electron in Si at 300 K if $\mu_e = 0.19 \text{ m}^2\text{V}^{-1}\text{S}^{-1}$. (3) ## **Group-C** (Long Answer Type Questions) 5 x 6=30 - 7. The Hall coefficient of a certain silicon specimen is measured as -7.35x10⁻⁵ m³C⁻¹. If the (5) conductivity of the specimen is 200 (Ω m)⁻¹, calculate the concentration and mobility of the charge carriers. - 8. Write down Schrödinger's equation for a free particle in a one-dimensional potential box. (5) Applying appropriate boundary conditions calculate its eigen energies. - 9. Determine the normalization constant a if the wave function has the following form $\psi(x) = \begin{cases} a \sin \frac{\pi x}{L}, & \text{for } 0 \le x \le L \\ 0, & \text{otherwise} \end{cases}$ (5) - Describe the variation of the width of the depletion layer under forward and reverse biasing. - 11. In a He-Ne laser transition from E₃ to E₂ level gives a laser emission of wavelength 632.8 (5) nm. If the energy of the E₂ level is 15.2 ×10⁻¹⁹ J, Evaluate the required pumping energy if there is no energy loss in He-Ne laser. - 12. Deduce the expression of the effective mass of electrons based on the Kronig-Penny Model. (5) ### OR Prove that for a system of electrons at T > 0 K obeying FD statistics, the probability that an energy level lying below the Fermi energy (E_F) is unoccupied is the same as the probability that an energy level lying above the E_F is occupied.